The emergence and spread of carbapenem resistance in Gram-negative bacilli such as , , , and through the production of carbapenemases is a global phenomenon. It threatens patient care and leads to therapeutic impasses. This study aims to genotypically determine the prevalence of the most frequent carbapenemase genes among multidrug-resistant strains isolated from patients at a biomedical analysis laboratory. A total of fifty-three unduplicated strains isolated from patient samples with a multidrug-resistant (MDR) profile were subjected to polymerase chain reaction (PCR) testing for carbapenem resistance genes. This study allowed us to identify fifteen strains carrying resistance genes among the fifty-three strains. All fifteen strains produced the metallo--lactamase enzymes; this represents a rate of 28.30% of study strains. Among these strains, ten carried the NDM resistance gene, NDM and VIM genes were detected in three strains and VIM was identified in two strains of . However, carbapenemases A (KPC and IMI), D (OXA-48), and IMP were not detected in the strains studied. Thus, NDM and VIM are the main carbapenemases detected in the strains in our study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256439PMC
http://dx.doi.org/10.1155/2023/4813225DOI Listing

Publication Analysis

Top Keywords

strains
12
strains isolated
12
genes detected
8
carbapenem resistance
8
resistance genes
8
fifteen strains
8
ndm vim
8
detected strains
8
genes
5
emergence delhi
4

Similar Publications

The current research was conducted to synthesize Parietaria alsinifolia-mediated iron oxide nanoparticles (P.A@FeONPs) using the green and eco-friendly protocol. The biosynthesized P.

View Article and Find Full Text PDF

Extracellular hydrolytic activity (phospholipase, protease and hemolysin production) was evaluated in 178 strains of potentially pathogenic ascomycetous (Candida parapsilosis, Candida tropicalis) and basidiomycetous (Rhodotorula mucilaginosa) yeasts isolated from the excreta of Mew Gulls. Two bird colonies, one nesting in a natural habitat and the other in an urban habitat at the landfill, were studied simultaneously during their 7-month breeding season. Significant differences in phospholipase and protease production were found between natural and anthropophized strains.

View Article and Find Full Text PDF

The Effect of Vaccination on the Competitive Advantage of Two Strains of an Infectious Disease.

Bull Math Biol

January 2025

Department of Mathematics and Computer Science, Lawrence Technological University, 21000 W. 10 Mile Rd., Southfield, MI, 48075, USA.

We investigate the impact of differential vaccine effectiveness, waning immunity, and natural cross-immunity on the capacity for vaccine-induced strain replacement in two-strain models of infectious disease spread. We focus specifically on the case where the first strain is more transmissible but the second strain is more immune-resistant. We consider two cases on vaccine-induced immunity: (1) a monovalent model where the second strain has immune escape with respect to vaccination; and (2) a bivalent model where the vaccine remains equally effective against both strains.

View Article and Find Full Text PDF

In the present study, the nematicidal and fungicidal activity of the biosurfactant (BS) produced by the strain Serratia ureilytica UTS was evaluated. The highest mortality of J2 juveniles of the nematode Nacobbus aberrans was 92.3% at a concentration of 30 mg/mL.

View Article and Find Full Text PDF

Medicinal plants often harbour various endophytic actinomycetia, which are well known for their potent antimicrobial properties and plant growth-promoting traits. In this study, we isolated an endophytic actinomycetia, A13, from the leaves of tea clone P312 from the MEG Tea Estate, Meghalaya, India. The isolate A13 was identified as Streptomyces sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!