The physiological control of stomatal opening by which plants adjust for water availability has been extensively researched. However, the impact of water availability on stomatal development has not received as much attention, especially for amphistomatic plants. Therefore, the acclimation of stomatal development in basil ( L.) leaves was investigated. Our results show that leaves developed under water-deficit conditions possess higher stomatal densities and decreased stomatal length for both the adaxial and abaxial leaf sides. Although the stomatal developmental reaction to water deficit was similar for the two leaf surfaces, it was proven that adaxial stomata are more sensitive to water stress than abaxial stomata, with more closed adaxial stomata under water-deficit conditions. Furthermore, plants with leaves containing smaller stomata at higher densities possessed a higher water use efficiency. Our findings highlight the importance of stomatal development as a tool for long-term acclimation to limit water loss, with minimal reduction in biomass production. This highlights the central role that stomata play in both the short (opening) and long-term (development) reaction of plants to water availability, making them key tools for efficient resource use and anticipation of future environmental changes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10251137 | PMC |
http://dx.doi.org/10.1093/hr/uhad075 | DOI Listing |
Plant Cell Environ
January 2025
State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Germplasm Resources in North China, Ministry of Education, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China.
Plant-specific homeodomain-leucine zipper I (HD-Zip I) transcription factors (TFs) crucially regulate plant drought tolerance. However, their specific roles in maize (Zea mays L.) regulating drought tolerance remain largely unreported.
View Article and Find Full Text PDFPlant Sci
January 2025
College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China. Electronic address:
Low phosphate (LP) availability significantly impacts crop yield and quality. PHOSPHATE STARVATION RESPONSE1 (PHR1) along with PHR1-like 1 (PHL1) act as a key transcriptional regulator in a plant's adaptive response to LP conditions. Abscisic acid (ABA) plays an important role in how plants respond to environmental stresses like salinity and drought.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
Background: Phaseolus vulgaris is a warm-season crop sensitive to low temperatures, which can adversely affect its growth, yield, and market value. Exogenous growth regulators, such as diethyl aminoethyl hexanoate (DA-6), have shown potential in alleviating stress caused by adverse environmental conditions. However, the effects that DA-6 has on P.
View Article and Find Full Text PDFPhotosynth Res
January 2025
Horticulture Department of Agriculture Faculty, Selcuk University, Konya, Turkey.
Seed priming and plant growth-promoting bacteria (PGPB) may alleviate salt stress effects. We exposed a salt-sensitive variety of melon to salinity following seed priming with NaCl and inoculation with Bacillus. Given the sensitivity of photosystem II (PSII) to salt stress, we utilized dark- and light-adapted chlorophyll fluorescence alongside analysis of leaf stomatal conductance of water vapour (G).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biotechnology, University of Verona, Verona, Italy.
Lower atmospheric pressure affects biologically relevant physical parameters such as gas partial pressure and concentration, leading to increased water vapor diffusivity and greater soil water content loss through evapotranspiration. This might impact plant photosynthetic activity, resource allocation, water relations, and growth. However, the direct impact of low air pressure on plant physiology is largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!