Human cognition is usually underpinned by intrinsic structure and functional neural co-activation in spatially distributed brain regions. Owing to lacking an effective approach to quantifying the covarying of structure and functional responses, how the structural-functional circuits interact and how genes encode the relationships, to deepen our knowledge of human cognition and disease, are still unclear. Here, we propose a multimodal covariance network (MCN) construction approach to capture interregional covarying of the structural skeleton and transient functional activities for a single individual. We further explored the potential association between brain-wide gene expression patterns and structural-functional covarying in individuals involved in a gambling task and individuals with major depression disorder (MDD), adopting multimodal data from a publicly available human brain transcriptomic atlas and 2 independent cohorts. MCN analysis showed a replicable cortical structural-functional fine map in healthy individuals, and the expression of cognition- and disease phenotype-related genes was found to be spatially correlated with the corresponding MCN differences. Further analysis of cell type-specific signature genes suggests that the excitatory and inhibitory neuron transcriptomic changes could account for most of the observed correlation with task-evoked MCN differences. In contrast, changes in MCN of MDD patients were enriched for biological processes related to synapse function and neuroinflammation in astrocytes, microglia, and neurons, suggesting its promising application in developing targeted therapies for MDD patients. Collectively, these findings confirmed the correlations of MCN-related differences with brain-wide gene expression patterns, which captured genetically validated structural-functional differences at the cellular level in specific cognitive processes and psychiatric patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10249784 | PMC |
http://dx.doi.org/10.34133/research.0171 | DOI Listing |
Objective: Excess cholesterol loading on arterial macrophages is linked to foam cell formation, atherosclerosis and cardiovascular risk in rheumatoid arthritis (RA). However, the effect of changes in cholesterol loading on coronary plaque trajectory and the impact of RA therapies on this relationship are unknown. We investigated the association between variations in cholesterol loading capacity (CLC) over time and atherosclerosis progression.
View Article and Find Full Text PDFProg Neurobiol
December 2024
Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany; C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Dusseldorf, Germany.
Neurotransmitter receptors are key molecules in signal transmission in the adult brain, and their precise spatial and temporal balance expressions also play a critical role in normal brain development. However, the specific balance expression of multiple receptors during hippocampal development is not well characterized. In this study, we used quantitative in vivo receptor autoradiography to measure the distributions and densities of 18 neurotransmitter receptor types in the mouse hippocampal complex at postnatal day 7, and compared them with the expressions of their corresponding encoding genes.
View Article and Find Full Text PDFJCO Clin Cancer Inform
December 2024
Onc.AI, San Carlos, CA.
Purpose: This study developed and validated a novel deep learning radiomic biomarker to estimate response to immune checkpoint inhibitor (ICI) therapy in advanced non-small cell lung cancer (NSCLC) using real-world data (RWD) and clinical trial data.
Materials And Methods: Retrospective RWD of 1,829 patients with advanced NSCLC treated with PD-(L)1 ICIs were collected from 10 academic and community institutions in the United States and Europe. The RWD included data sets for discovery (Data Set A-Discovery, n = 1,173) and independent test (Data Set B, n = 458).
medRxiv
November 2024
Department of Psychiatry, University of California San Diego, La Jolla, California, USA.
Elife
December 2024
McConnell Brain Imaging Centre, McGill University, Montreal, Canada.
Complex structural and functional changes occurring in typical and atypical development necessitate multidimensional approaches to better understand the risk of developing psychopathology. Here, we simultaneously examined structural and functional brain network patterns in relation to dimensions of psychopathology in the Adolescent Brain Cognitive Development dataset. Several components were identified, recapitulating the psychopathology hierarchy, with the general psychopathology () factor explaining most covariance with multimodal imaging features, while the internalizing, externalizing, and neurodevelopmental dimensions were each associated with distinct morphological and functional connectivity signatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!