Leaf photosynthetic nitrogen-use efficiency (PNUE) diversified significantly among C species. To date, the morpho-physiological mechanisms and interrelationships shaping PNUE on an evolutionary time scale remain unclear. In this study, we assembled a comprehensive matrix of leaf morpho-anatomical and physiological traits for 679 C species, ranging from bryophytes to angiosperms, to comprehend the complexity of interrelationships underpinning PNUE variations. We discovered that leaf mass per area (LMA), mesophyll cell wall thickness (T ), Rubisco N allocation fraction (P ), and mesophyll conductance (g ) together explained 83% of PNUE variations, with P and g accounting for 65% of those variations. However, the P effects were species-dependent on g , meaning the contribution of P on PNUE was substantially significant in high-g species compared to low-g species. Standard major axis (SMA) and path analyses revealed a weak correlation between PNUE and LMA (r  = 0.1), while the SMA correlation for PNUE-T was robust (r  = 0.61). P was inversely related to T , paralleling the relationship between g and T , resulting in the internal CO drawdown being only weakly proportional to T . The coordination of P and g in relation to T constrains PNUE during the course of evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.14641DOI Listing

Publication Analysis

Top Keywords

cell wall
8
wall thickness
8
photosynthetic nitrogen-use
8
nitrogen-use efficiency
8
pnue variations
8
pnue
7
thickness phylogenetically
4
phylogenetically consistent
4
consistent effects
4
effects photosynthetic
4

Similar Publications

Lotus japonicus-ROOT HAIR LESS1-LIKE1 (LRL1) of Arabidopsis thaliana encodes a basic helix-loop-helix (bHLH) transcription factor (TF) involved in root hair development. Root hair development is regulated by an elaborate transcriptional network, in which GLABRA2 (GL2), a key negative regulator, directly represses bHLH TF genes, including LRL1 and ROOT HAIR DEFECTIVE6 (RHD6). Although RHD6 and its paralogous TFs have been shown to connect downstream to genes involved in cell morphological events such as endomembrane and cell wall modification, the network downstream of LRL1 remains elusive.

View Article and Find Full Text PDF

Background: Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of mortality in the western world despite the success of lipid lowering therapies, highlighting the need for novel lipid-independent therapeutic strategies. Genome-wide association studies (GWAS) have identified numerous genes associated with ASCVD that function in the vessel wall, suggesting that vascular cells mediate ASCVD, and that the genes and pathways essential for this vascular cell function may be novel therapeutic targets for the treatment of ASCVD. Furthermore, some of these implicated genes appear to function in the adventitial layer of the vasculature, suggesting these cells are able to potentiate ASCVD.

View Article and Find Full Text PDF

This study investigates the effect of 100 mg L thymol treatment on the quality of post-harvest peppers stored at 10 °C. The results showed that thymol treatment significantly reduced decay rate, reactive oxygen species (ROS) accumulation, and saturated fatty acid levels in peppers. Moreover, unsaturated fatty acids, non-enzymatic antioxidants, and antioxidant enzyme levels increased after treatment.

View Article and Find Full Text PDF

Malignant transformation is a rare complication of ovarian mature cystic teratoma that occurs in 1-3% of cases. We herein report a case of squamous cell carcinoma originating from mature cystic teratoma of the ovary diagnosed 10 years after initial tumor detection. A 69-year-old woman presented to the Department of Internal Medicine with a seven-month history of abdominal fullness.

View Article and Find Full Text PDF

A vacuolar invertase gene modulates sugar metabolism and postharvest fruit quality and stress resistance in tomato.

Hortic Res

January 2025

Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.

Sugars act as signaling molecules to modulate various growth processes and enhance plant tolerance to various abiotic and biotic stresses. Moreover, sugars contribute to the postharvest flavor in fleshy fruit crops. To date, the regulation of sugar metabolism and its effect in plant growth, fruit ripening, postharvest quality, and stress resistance remains not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!