A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Methods for comparative effectiveness based on time to confirmed disability progression with irregular observations in multiple sclerosis. | LitMetric

Real-world data sources offer opportunities to compare the effectiveness of treatments in practical clinical settings. However, relevant outcomes are often recorded selectively and collected at irregular measurement times. It is therefore common to convert the available visits to a standardized schedule with equally spaced visits. Although more advanced imputation methods exist, they are not designed to recover longitudinal outcome trajectories and typically assume that missingness is non-informative. We, therefore, propose an extension of multilevel multiple imputation methods to facilitate the analysis of real-world outcome data that is collected at irregular observation times. We illustrate multilevel multiple imputation in a case study evaluating two disease-modifying therapies for multiple sclerosis in terms of time to confirmed disability progression. This survival outcome is derived from repeated measurements of the Expanded Disability Status Scale, which is collected when patients come to the healthcare center for a clinical visit and for which longitudinal trajectories can be estimated. Subsequently, we perform a simulation study to compare the performance of multilevel multiple imputation to commonly used single imputation methods. Results indicate that multilevel multiple imputation leads to less biased treatment effect estimates and improves the coverage of confidence intervals, even when outcomes are missing not at random.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500950PMC
http://dx.doi.org/10.1177/09622802231172032DOI Listing

Publication Analysis

Top Keywords

multilevel multiple
16
multiple imputation
16
imputation methods
12
time confirmed
8
confirmed disability
8
disability progression
8
multiple sclerosis
8
collected irregular
8
multiple
6
imputation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!