Genome-wide association studies (GWASs) have identified single nucleotide polymorphisms (SNPs) associated with susceptibility and severity of coronavirus disease 2019 (COVID-19). However, identified SNPs are inconsistent across studies, and there is no compelling consensus that COVID-19 status is determined by genetic factors. Here, we conducted a systematic review and meta-analysis to determine the effect of genetic factors on COVID-19. A random-effect meta-analysis was performed to estimate pooled odds ratios (ORs) of SNP effects, and SNP-based heritability (SNP-h ) of COVID-19. The analyses were performed using meta-R package, and Stata version 17. The meta-analysis included a total of 96,817 COVID-19 cases and 6,414,916 negative controls. The meta-analysis showed that a cluster of highly correlated 9 SNPs (R > 0.9) at 3p21.31 gene locus covering LZTFL1 and SLC6A20 genes was significantly associated with COVID-19 severity, with a pooled OR of 1.8 [1.5-2.0]. Meanwhile, another 3 SNPs (rs2531743-G, rs2271616-T, and rs73062389-A) within the locus was associated with COVID-19 susceptibility, with pooled estimates of 0.95 [0.93-0.96], 1.23 [1.19-1.27] and 1.15 [1.13-1.17], respectively. Interestingly, SNPs associated with susceptibility and SNPs associated with severity in this locus are in linkage equilibrium (R < 0.026). The SNP-h on the liability scale for severity and susceptibility was estimated at 7.6% (Se = 3.2%) and 4.6% (Se = 1.5%), respectively. Genetic factors contribute to COVID-19 susceptibility and severity. In the 3p21.31 locus, SNPs that are associated with susceptibility are not in linkage disequilibrium (LD) with SNPs that are associated with severity, indicating within-locus heterogeneity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rmv.2466 | DOI Listing |
Brief Bioinform
November 2024
Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
This study aimed to investigate the genetic association between glioblastoma (GBM) and unsupervised deep learning-derived imaging phenotypes (UDIPs). We employed a combination of genome-wide association study (GWAS) data, single-nucleus RNA sequencing (snRNA-seq), and scPagwas (pathway-based polygenic regression framework) methods to explore the genetic links between UDIPs and GBM. Two-sample Mendelian randomization analyses were conducted to identify causal relationships between UDIPs and GBM.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America.
Background: Bipolar Disorder (BD) is a complex disease. It is heterogeneous, both at the phenotypic and genetic level, although the extent and impact of this heterogeneity is not fully understood. One way to assess this heterogeneity is to look for patterns in the subphenotype data.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil.
Insecticide resistance is a major problem in food production, environmental sustainability, and human health. The cotton bollworm Helicoverpa armigera is a globally distributed crop pest affecting over 300 crop species. H.
View Article and Find Full Text PDFRheumatology (Oxford)
January 2025
Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain.
Objectives: COVID-19 and systemic sclerosis (SSc) share multiple similarities in their clinical manifestations, alterations in immune response, and therapeutic options. These resemblances have also been identified in other immune-mediated inflammatory diseases where a common genetic component has been found. Thus, we decided to evaluate for the first time this shared genetic architecture with SSc.
View Article and Find Full Text PDFRice (N Y)
January 2025
College of Agronomy, Anhui Agricultural University, Hefei, 230000, China.
Panicle elongation length (PEL), which determines panicle exsertion, is an important outcrossing-related trait. Mining genes controlling PEL in rice (Oryza sativa L.) has great practical significance in breeding cytoplasmic male sterility (CMS) lines with increased PEL and simplified, high-efficiency seed production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!