Gold Nanoparticles Mineralized by Peptide Liquid Crystals with Dual-Functional Enzyme-like Activities: An Automatic Membrane Reactor for Glucose Detection.

Langmuir

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Soochow University Analysis and Testing Center, Suzhou Industrial Park, Suzhou 215123, P. R. China.

Published: June 2023

The development of stable multifunctional enzyme mimics with tandem catalytic effects provides a great opportunity to construct economical and convenient bioassays. Inspired by biomineralization, in this work self-assembled -(9-fluorenylmethoxycarbonyl)-protected tripeptide (Fmoc-FWK-NH) liquid crystals were used as templates to in situ mineralize Au nanoparticles (AuNPs), and then a dual-functional enzyme-mimicking membrane reactor based on AuNPs and peptide-based hybrids was constructed. AuNPs with a uniform particle size and good dispersion were in situ reduced on the surface of the peptide liquid crystal due to the reduction of the indole group on the tryptophan residue, which exhibited excellent peroxidase-like and glucose oxidase-like activities simultaneously. Meanwhile, the oriented nanofibers aggregated into a three-dimensional network, which was further immobilized on the mixed cellulose membrane to form a membrane reactor. A biosensor was made to realize fast, low-cost, and automatic detection for glucose. This work represents a promising platform for the design and construction of novel multifunctional materials based on the biomineralization strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c00792DOI Listing

Publication Analysis

Top Keywords

membrane reactor
12
peptide liquid
8
liquid crystals
8
gold nanoparticles
4
nanoparticles mineralized
4
mineralized peptide
4
crystals dual-functional
4
dual-functional enzyme-like
4
enzyme-like activities
4
activities automatic
4

Similar Publications

Mildly acidic pH boosts up CO conversion to isobutyrate in H driven gas fermentation system.

Water Res

December 2024

Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia. Electronic address:

As a greenhouse gas, massive carbon dioxide (CO) has been generated due to organic matter degradation in wastewater treatment processes. Microbial gas fermentation offers a promising approach to capture CO and generate various valuable chemicals. However, limited studies have achieved branched or medium-chain fatty acids production via gas fermentation.

View Article and Find Full Text PDF

In a previous study, we developed an integrated reaction system combining NH decomposition and CO methanation within a membrane reactor, significantly enhancing reactor performance through efficient H separation. Ru/Ba/γ-AlO and Ru/ZrO were employed as catalysts for each reaction. To ensure the accuracy and reliability of our results, they were validated through 1D models using FlexPDE Professional Version 7.

View Article and Find Full Text PDF

The issue of environmental pollution caused by wastewater discharge from fruit juice production has attracted increasing attention. However, the cost-effectiveness of conventional treatment technology remains insufficient. In this study, a gravity-driven membrane bioreactor (GDMBR) was developed to treat real fruit juice wastewater from secondary sedimentation at pressures ranging from 0.

View Article and Find Full Text PDF

Achieving mainstream nitrogen removal by partial nitrification and anammox in the carriers-coupled membrane aerated biofilm reactor.

Water Res

December 2024

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; Research and Application Centre for Membrane Technology, School of Environment, Tsinghua University, Beijing, 100084, China. Electronic address:

The integration of partial nitrification-anammox (PN/A) into membrane-aerated biofilm reactor (MABR) is a promisingly energy-efficient and high-efficiency technology for nitrogen removal. The inhibition of nitrite oxidizing bacteria (NOB) remains as the most significant challenge for its development. In our investigation, we proposed a novel process to integrate carriers to MABR (CMABR), which combined the carriers enriched with anaerobic ammonium-oxidizing bacteria (AnAOB) and partial nitrifying MABR system.

View Article and Find Full Text PDF

Comprehensive performance of a new-type hybrid membrane bioreactor applied to mainstream anammox process.

J Environ Manage

December 2024

Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.

The new-type submerged granular sludge membrane bioreactor (S-GSMBR) was constructed by installing a membrane module inside an upflow anaerobic sludge blanket. S-GSMBR achieved the fast start-up (47 d) and long-term stable operation (133 d) of mainstream Anammox process as well as the effective control of membrane fouling. The maximum nitrogen removal rate and efficiency were 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!