A primary pathology of Alzheimer's disease (AD) is amyloid β (Aβ) deposition in brain parenchyma and blood vessels, the latter being called cerebral amyloid angiopathy (CAA). Parenchymal amyloid plaques presumably originate from neuronal Aβ precursor protein (APP). Although vascular amyloid deposits' origins remain unclear, endothelial APP expression in APP knock-in mice was recently shown to expand CAA pathology, highlighting endothelial APP's importance. Furthermore, two types of endothelial APP-highly O-glycosylated APP and hypo-O-glycosylated APP-have been biochemically identified, but only the former is cleaved for Aβ production, indicating the critical relationship between APP O-glycosylation and processing. Here, we analyzed APP glycosylation and its intracellular trafficking in neurons and endothelial cells. Although protein glycosylation is generally believed to precede cell surface trafficking, which was true for neuronal APP, we unexpectedly observed that hypo-O-glycosylated APP is externalized to the endothelial cell surface and transported back to the Golgi apparatus, where it then acquires additional O-glycans. Knockdown of genes encoding enzymes initiating APP O-glycosylation significantly reduced Aβ production, suggesting this non-classical glycosylation pathway contributes to CAA pathology and is a novel therapeutic target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10344954 | PMC |
http://dx.doi.org/10.1016/j.jbc.2023.104905 | DOI Listing |
J Environ Manage
February 2022
Department of Civil Engineering, Lassonde School of Engineering, York University, ON, M3J1P3, Canada. Electronic address:
The interest in the A-stage of the adsorption/bio-oxidation (A/B) process has considerably increased due to its capacity of carbon redirection to the solids stream. Induced by its flexible and compact design, the Alternating Activated Adsorption (AAA) was recently implemented in full-scale as an alternative A-stage system. However, the literature on such a system is scarce.
View Article and Find Full Text PDFToxicol Lett
January 2018
ReNeuroGen LLC, Milwaukee, WI 53122, USA. Electronic address:
The eosinophilia-myalgia syndrome (EMS) outbreak of 1989 that occurred in the USA and elsewhere was caused by the ingestion of l-Tryptophan (L-Trp) solely manufactured by the Japanese company Showa Denko K.K. (SD).
View Article and Find Full Text PDFJ Chem Phys
April 2012
Physics Department, University at Buffalo, Buffalo, New York 14260, USA.
This study aims to model a minimal dynein motor domain capable of motor function, which consists of the linker domain, six AAA+ modules (AAA1-AAA6), coiled coil stalk, and C-terminus domain. To this end, we have used the newly solved X-ray structures of dynein motor domain to perform a coarse-grained modeling of dynein's post- and pre-powerstroke conformation and the conformational transition between them. First, we have used normal mode analysis to identify a single normal mode that captures the coupled motions of AAA1-AAA2 closing and linker domain rotation, which enables the ATP-driven recovery stroke of dynein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!