Apoptosis is a natural physiological process that can maintain the homeostasis of the body and immune system. This process plays an important role in the system's resistance to autoimmune development. Because of the dysfunction of cell apoptosis mechanism, the number of autoreactive cells in the peripheral tissue increases along with their accumulation. This will lead to the development of autoimmune diseases, such as multiple sclerosis (MS). MS is an immune-mediated disease of the central nervous system characterized by severe white matter demyelination. Because of the complexity of its pathogenesis, there is no drug to cure it completely. Experimental autoimmune encephalomyelitis (EAE) is an ideal animal model for the study of MS. Carboplatin (CA) is a second-generation platinum anti-tumor drug. In this study, we attempted to assess whether CA could be used to ameliorate EAE. CA reduced spinal cord inflammation, demyelination, and disease scores in mice with EAE. Moreover, the number and proportion of pathogenic T cells especially Th1 and Th17 in the spleen and draining lymph nodes were reduced in CA-treated EAE mice. Proteomic differential enrichment analysis showed that the proteins related to apoptosis signal changed significantly after CA treatment. CFSE experiment showed that CA significantly inhibited the T cell proliferation. Finally, CA also induced apoptosis in activated T cells and MOG-specific T cells in vitro. Overall, our findings indicated that CA plays a protective role in the initiation and progression of EAE and has the potential to be a novel drug in the treatment of MS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2023.110458 | DOI Listing |
J Exp Med
February 2025
Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
T helper 17 (Th17) cells are effector cells that mediate inflammatory responses to bacterial and fungal pathogens. While the cytokine signaling inputs required to generate Th17s are established, less is known about intracellular pathways that drive Th17 differentiation. Our previously published phosphoproteomic screen identifies that PIKFYVE, a lipid kinase that generates the phosphatidylinositol PtdIns(3,5)P2, is activated during Th17 differentiation.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China. Electronic address:
Optimizing the design of nanoparticulate co-delivery systems of antigens and immunomodulators to induce antigen-specific immune tolerance effectively remains a challenge, constrained by low drug loading capacity and premature leakage of active ingredients. Here, we report a prodrug self-assembled nanoparticles (NPs) strategy to synergistically deliver antigen and rapamycin (RAPA) into antigen-presenting cells (APCs) by simply conjugating rapamycin with an aliphatic chain. These prodrug NPs can be efficiently taken up by APCs and then release rapamycin through cleavage of the linker by intracellular esterase.
View Article and Find Full Text PDFHistochem Cell Biol
December 2024
Institute of Pathology, Klinikum Bayreuth, 95445, Bayreuth, Germany.
A20, an ubiquitin-editing enzyme, plays a pivotal role in regulating cell signaling and immune responses. Dysregulated A20 expression has been associated with various pathological conditions, including inflammatory diseases and malignancies, where its expression levels often correlate with differing prognoses in solid tumors. This study aimed to explore the expression and cellular localization of A20 in both nonpathological and diseased human gastric tissues to gain deeper insights into its involvement in gastric pathologies.
View Article and Find Full Text PDFNat Commun
December 2024
College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
Delivering protein drugs to the central nervous system (CNS) is challenging due to the blood-brain and blood-spinal cord barrier. Here we show that neutrophils, which naturally migrate through these barriers to inflamed CNS sites and release neutrophil extracellular traps (NETs), can be leveraged for therapeutic delivery. Tannic acid nanoparticles tethered with anti-Ly6G antibody and interferon-β (aLy6G-IFNβ@TLP) are constructed for targeted neutrophil delivery.
View Article and Find Full Text PDFFront Immunol
December 2024
College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
The cGAS-STING signaling pathway is a critical component of the innate immune response, playing a significant role in various diseases. As a central element of this pathway, STING responds to both endogenous and exogenous DNA stimuli, triggering the production of interferons and pro-inflammatory cytokines to enhance immune defenses against tumors and pathogens. However, dysregulated activation of the STING pathway is implicated in the pathogenesis of multiple diseases, including autoinflammation, viral infections, and cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!