Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Seafloor sediments are an important sink for microplastics (MPs), and the vertical profile of MP accumulation in a sediment core represents historical pollution trends. In this study, MP (20-5000 μm) pollution in surface sediments of urban, aquaculture, and environmental preservation sites in South Korea was evaluated, and the historical trend was investigated using age-dated core sediments from the urban and aquaculture sites. The abundance of MPs ranked in the order of urban, aquaculture, and environmental preservation sites. Polymer types were more diverse at the urban site compared to other sites, and expanded polystyrene was dominant in the aquaculture site. An increase in MP pollution and polymer types was observed from bottom to top of cores, and historical trends of MP pollution reflect local influences. Our results indicate that the characteristics of MPs are determined by human activities, and MP pollution should be addressed according to the characteristics of each site.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2023.115121 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!