Possible causes of narcosis-like symptoms in freedivers.

Undersea Hyperb Med

Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium.

Published: June 2023

During deep-sea freediving, many freedivers describe symptoms fairly similar to what has been related to inert gas narcosis in scuba divers. This manuscript aims to present the potential mechanisms underlying these symptoms. First, known mechanisms of narcosis are summarized while scuba diving. Then, potential underlying mechanisms involving the toxicity of gases (nitrogen, carbon dioxide and oxygen) are presented in freedivers. As the symptoms are felt during ascent, nitrogen is likely not the only gas involved. Since freedivers are frequently exposed to hypercapnic hypoxia toward the end of the dive, it is proposed that carbon dioxide and oxygen gases both play a major role. Finally, a new "hemodynamic hypothesis" based on the diving reflex is proposed in freedivers. The underlying mechanisms are undoubtedly multifactorial and therefore require further research and a new descriptive name. We propose a new term for these types of symptoms: freediving transient cognitive impairment.

Download full-text PDF

Source
http://dx.doi.org/10.22462/01.01.2023.38DOI Listing

Publication Analysis

Top Keywords

underlying mechanisms
8
carbon dioxide
8
dioxide oxygen
8
freedivers
5
narcosis-like symptoms
4
symptoms freedivers
4
freedivers deep-sea
4
deep-sea freediving
4
freediving freedivers
4
freedivers describe
4

Similar Publications

Plants possess remarkably durable resistance against non-adapted pathogens in nature. However, the molecular mechanisms underlying this resistance remain poorly understood, and it is unclear how the resistance is maintained without coevolution between hosts and the non-adapted pathogens. In this study, we used Phytophthora sojae (Ps), a non-adapted pathogen of N.

View Article and Find Full Text PDF

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.

View Article and Find Full Text PDF

Divergent responses of plant multi-element coupling to nitrogen and phosphorus addition in a meadow steppe.

BMC Plant Biol

January 2025

Institute of Grassland Science, School of Life Sciences, Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China.

The intricate biogeochemical cycling of multiple elements plays a pivotal role in upholding a myriad of ecosystem functions. However, our understanding of elemental stoichiometry and coupling in response to global changes remains primarily limited to plant carbon: nitrogen: phosphorus (C: N: P). Here, we assessed the responses of 11 elements in plants from different functional groups to global changes.

View Article and Find Full Text PDF

Background: Bear bile powder (BBP), a unique animal-derived medicine with anti-inflammatory and antioxidant effects, is used in Shexiang Tongxin dropping pills (STDP), which is applied to treat cardiovascular diseases, including acute myocardial infarction (AMI). The efficacy and compatibility mechanisms of action of BBP in STDP against cardiovascular diseases remain unclear. This study aimed to investigate the compatibility effects of BBP in STDP in rats with AMI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!