Four solution-processable, linear conjugated polymers of intrinsic porosity are synthesised and tested for gas phase carbon dioxide photoreduction. The polymers' photoreduction efficiency is investigated as a function of their porosity, optical properties, energy levels and photoluminescence. All polymers successfully form carbon monoxide as the main product, without the addition of metal co-catalysts. The best performing single component polymer yields a rate of 66 μmol h m, which we attribute to the polymer exhibiting macroporosity and the longest exciton lifetimes. The addition of copper iodide, as a source of a copper co-catalyst in the polymers shows an increase in rate, with the best performing polymer achieving a rate of 175 μmol h m. The polymers are active for over 100 h under operating conditions. This work shows the potential of processable polymers of intrinsic porosity for use in the gas phase photoreduction of carbon dioxide towards solar fuels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10257718PMC
http://dx.doi.org/10.1038/s41467-023-39161-6DOI Listing

Publication Analysis

Top Keywords

polymers intrinsic
12
carbon dioxide
12
dioxide photoreduction
8
intrinsic porosity
8
gas phase
8
best performing
8
polymers
5
solution-processable polymers
4
intrinsic microporosity
4
microporosity gas-phase
4

Similar Publications

This paper describes the first use of conductive metal-organic frameworks as the active material in the electrochemical detection of nitric oxide in aqueous solution. Four hexahydroxytriphenylene (HHTP)-based MOFs linked with first-row transition metal nodes (M = Co, Ni, Cu, Zn) were compared as thin-film working electrodes for promoting oxidation of NO using voltammetric and amperometric techniques. Cu- and Ni-linked MOF analogs provided signal enhancement of 5- to 7-fold over a control glassy carbon electrode (SA = 6.

View Article and Find Full Text PDF

Aromatic diimides such as naphthalene diimide (NDI) and pyromellitic diimide (MDI) are important building blocks for organic electrode materials. They feature a two-electron redox mechanism that allows for energy storage. Due to the smaller size of MDI compared to NDI its theoretical capacity is higher.

View Article and Find Full Text PDF

Rapid Na Transport Pathway and Stable Interface Design Enabling Ultralong Life Solid-State Sodium Metal Batteries.

Angew Chem Int Ed Engl

December 2024

School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Dalian University of Technology, Dalian, 116024, China.

Sodium-metal batteries (SMBs) using solid-state polymer electrolytes (SPEs) show impressive superiority in energy density and safety. As promising candidates for SPEs, solid-state plastic crystal electrolytes (SPCE) based on succinonitrile (SN) plastic crystal could achieve high ion conductivity and wide voltage window. Nonetheless, the notorious SN decomposition reaction on the electrode/electrolyte interface seriously challenges the stable operation of the battery.

View Article and Find Full Text PDF

Pulsed Dipolar ESR Spectroscopy (PDS) is a uniquely powerful technique to characterize the structural property of intrinsically disordered proteins (IDPs) and polymers and the conformational evolution of IDPs and polymers, e.g. during assembly, by offering the probability distribution of segment end-to-end distances.

View Article and Find Full Text PDF

Toward Automated Simulation Research Workflow through LLM Prompt Engineering Design.

J Chem Inf Model

January 2025

The State Key Laboratory of Molecular Engineering of Polymers, The Research Center of AI for Polymer Science Department of Macromolecular Science, Fudan University, Shanghai 200433, China.

The advent of Large Language Models (LLMs) has created new opportunities for the automation of scientific research spanning both experimental processes and computational simulations. This study explores the feasibility of constructing an autonomous simulation agent (ASA) powered by LLMs through prompt engineering and automated program design to automate the entire simulation research process according to a human-provided research plan. This process includes experimental design, remote upload and simulation execution, data analysis, and report compilation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!