Structural irregularities in MR corpus callosal images and their association with cerebrospinal fluid biomarkers in Mild Cognitive Impairments.

Neurosci Lett

Non-Invasive Imaging and Diagnostic Laboratory, Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India. Electronic address:

Published: July 2023

In this study, irregularity measures from MR images of corpus callosal brain structures in healthy and Mild Cognitive Impairment (MCI) conditions are extracted and their association with Cerebrospinal Fluid (CSF) biomarkers are analyzed. For this, MR images of healthy controls, Early MCI (EMCI) and Late MCI (LMCI) subjects are considered from a public database. The considered images are preprocessed and corpus callosal structure is segmented. Structural irregularity measures are extracted from the segmented regions using Fourier analysis. Statistical tests are performed to identify the significant features which can characterize the MCI stages. Association of these measures with CSF amyloid beta and tau concentrations are further investigated. Results demonstrate that Fourier spectral analysis is able to characterize the non-periodic variations in the corpus callosal structures of healthy, EMCI and LMCI MR images. The callosal irregularity measures increase as the disease progresses from healthy to LMCI. Phosphorylated tau concentrations in CSF demonstrate a positive correlation with irregularity measures across the diagnostic groups. Significant association of callosal measures and amyloid beta levels are found to be absent in MCI stages. As corpus callosal structural irregularities due to early MCI condition and their association with CSF markers remain uncharacterized in the literature, this study seems to be clinically significant for the timely intervention of pre-symptomatic MCI stages.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2023.137329DOI Listing

Publication Analysis

Top Keywords

corpus callosal
20
irregularity measures
16
mci stages
12
structural irregularities
8
association cerebrospinal
8
cerebrospinal fluid
8
mild cognitive
8
structures healthy
8
early mci
8
amyloid beta
8

Similar Publications

Improved deep canonical correlation fusion approach for detection of early mild cognitive impairment.

Med Biol Eng Comput

January 2025

Non-Invasive Imaging and Diagnostic Laboratory, Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India.

Detection of early mild cognitive impairment (EMCI) is clinically challenging as it involves subtle alterations in multiple brain sub-anatomic regions. Among different brain regions, the corpus callosum and lateral ventricles are primarily affected due to EMCI. In this study, an improved deep canonical correlation analysis (CCA) based framework is proposed to fuse magnetic resonance (MR) image features from lateral ventricular and corpus callosal structures for the detection of EMCI condition.

View Article and Find Full Text PDF

A microanatomical study of the precentral cerebral wall in human fetuses of the second trimester with ventriculomegaly and corpus callosal dysgenesis.

Clin Neurol Neurosurg

December 2024

Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India. Electronic address:

Background: The complex structure and function of the cerebrum make it a key focus in neuroscience research. It develops from telencephalic vesicles through processes such as cell growth, division, and migration from the neuroepithelium's ventricular matrix, forming the six-layered isocortex or neocortex. Multipotent neuroepithelial cells give rise to both neuronal and glial precursors, which populate the cerebral cortex.

View Article and Find Full Text PDF
Article Synopsis
  • Motor symptom laterality in Parkinson's Disease (PD) impacts both motor and nonmotor symptoms, potentially altering patient prognosis, with compensatory mechanisms in the brain's dominant hemisphere playing a key role.
  • This study investigated the microstructural changes in the corpus callosum (CC), the brain's main connector between hemispheres, in 201 right-handed PD patients (split between left- and right-onset) compared to 100 healthy controls using advanced imaging techniques.
  • Findings revealed reduced free water and fractional anisotropy, along with increased mean diffusivity in the CC of patients with left-side PD onset, highlighting the relationship between brain structure and disease symptoms.
View Article and Find Full Text PDF

Background And Aims: The corpus callosum is recognized as the largest interhemispheric white matter structure, coordinating distinct functions of the brain. High-altitude environments may influence the structure of the corpus callosum. This study aims to evaluate the morphologic characteristics of the corpus callosum in Tibetans residing on the Qinghai-Tibet Plateau while investigating the effects of sex, age, and high-altitude exposure on its morphology.

View Article and Find Full Text PDF

Importance: Amidst an unprecedented opioid epidemic, identifying neurobiological correlates of change with medication-assisted treatment of heroin use disorder is imperative. White matter impairments in individuals with heroin use disorder (HUD) have been associated with drug craving, a reliable predictor of treatment outcomes; however, little is known about structural connectivity changes with inpatient treatment and abstinence in individuals with HUD.

Objective: To assess white matter microstructure and associations with drug craving changes with inpatient treatment in individuals with HUD (effects of time and rescan compared with controls).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!