Insulin-Like Growth Factor1 Preserves Gastric Pacemaker Cells and Motor Function in Aging via ERK1/2 Activation.

Cell Mol Gastroenterol Hepatol

Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, Minnesota. Electronic address:

Published: August 2023

Background & Aims: Impaired gastric motor function in the elderly causes reduced food intake leading to frailty and sarcopenia. We previously found that aging-related impaired gastric compliance was mainly owing to depletion of interstitial cells of Cajal (ICC), pacemaker cells, and neuromodulator cells. These changes were associated with reduced food intake. Transformation-related protein 53-induced suppression of extracellular signal-regulated protein kinase (ERK)1/2 in ICC stem cell (ICC-SC) cell-cycle arrest is a key process for ICC depletion and gastric dysfunction during aging. Here, we investigated whether insulin-like growth factor 1 (IGF1), which can activate ERK in gastric smooth muscles and invariably is reduced with age, could mitigate ICC-SC/ICC loss and gastric dysfunction in klotho mice, a model of accelerated aging.

Methods: Klotho mice were treated with the stable IGF1 analog LONG R recombinant human (rh) IGF1 (150 μg/kg intraperitoneally twice daily for 3 weeks). Gastric ICC/ICC-SC and signaling pathways were studied by flow cytometry, Western blot, and immunohistochemistry. Gastric compliance was assessed in ex vivo systems. Transformation-related protein 53 was induced with nutlin 3a and ERK1/2 signaling was activated by rhIGF-1 in the ICC-SC line.

Results: LONG R rhIGF1 treatment prevented reduced ERK1/2 phosphorylation and gastric ICC/ICC-SC decrease. LONG R rhIGF1 also mitigated the reduced food intake and impaired body weight gain. Improved gastric function by LONG R rhIGF1 was verified by in vivo systems. In ICC-SC cultures, rhIGF1 mitigated nutlin 3a-induced reduced ERK1/2 phosphorylation and cell growth arrest.

Conclusions: IGF1 can mitigate age-related ICC/ICC-SC loss by activating ERK1/2 signaling, leading to improved gastric compliance and increased food intake in klotho mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10372898PMC
http://dx.doi.org/10.1016/j.jcmgh.2023.06.002DOI Listing

Publication Analysis

Top Keywords

food intake
16
reduced food
12
gastric compliance
12
klotho mice
12
long rhigf1
12
gastric
11
insulin-like growth
8
pacemaker cells
8
motor function
8
impaired gastric
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!