No evidence that acute clozapine administration alters CA1 phase precession in rats.

Brain Res

Psychology Dept., Otago Univ., Dunedin, New Zealand. Electronic address:

Published: September 2023

Hippocampal phase precession, wherein there is a systematic shift in the phase of neural firing against the underlying theta activity, is proposed to play an important role in the sequencing of information in memory. Previous research shows that the starting phase of precession is more variable in rats following maternal immune activation (MIA), a known risk factor for schizophrenia. Since starting phase variability has the potential to disorganize the construction of sequences of information, we tested whether the atypical antipsychotic clozapine, which ameliorates some cognitive deficits in schizophrenia, alters this aspect of phase precession. Either saline or clozapine (5 mg/kg) was administered to rats and then CA1 place cell activity was recorded from the CA1 region of the hippocampus as the animals ran around a rectangular track for food reward. When compared to saline trials, acute administration of clozapine did not affect any place cell properties, including those related to phase precession, in either control or MIA animals. Clozapine did, however, produce a reduction in locomotion speed, indicating that its presence had some effect on behaviour. These results help to constrain explanations of phase precession mechanisms and their potential role in sequence learning deficits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2023.148446DOI Listing

Publication Analysis

Top Keywords

phase precession
24
phase
8
starting phase
8
place cell
8
precession
6
clozapine
5
evidence acute
4
acute clozapine
4
clozapine administration
4
administration alters
4

Similar Publications

In this review, we present a new set of machine learning-based materials research methodologies for polycrystalline materials developed through the Core Research for Evolutionary Science and Technology project of the Japan Science and Technology Agency. We focus on the constituents of polycrystalline materials (i.e.

View Article and Find Full Text PDF

Left Ventricular Hemodynamic Forces Changes in Fabry Disease: A Cardiac Magnetic Resonance Study.

J Magn Reson Imaging

January 2025

Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Background: Hemodynamic force (HDF) from cardiac MRI can indicate subclinical myocardial dysfunction, and help identify early cardiac changes in patients with Fabry disease (FD). The hemodynamic change in FD patients remains unclear.

Purpose: To explore HDF changes in FD and the potential of HDF measurements as diagnostic markers indicating early cardiac changes in FD.

View Article and Find Full Text PDF

Low-frequency noise in detection systems significantly affects the performance of ultrasensitive and ultracompact spin-exchange relaxation-free atomic magnetometers. High frequency modulation detection helps effectively suppress the 1/ noise and enhance the signal-to-noise ratio, but conventional modulators are bulky and restrict the development of integrated atomic magnetometer modulation-detection systems. Resonant metasurface-based thin-film lithium-niobate (TFLN) active optics can modulate free-space light within a compact configuration.

View Article and Find Full Text PDF

The hippocampal CA3 subregion is a densely connected recurrent circuit that supports memory by generating and storing sequential neuronal activity patterns that reflect recent experience. While theta phase precession is thought to be critical for generating sequential activity during memory encoding, the circuit mechanisms that support this computation across hippocampal subregions are unknown. By analyzing CA3 network activity in the absence of each of its theta-modulated external excitatory inputs, we show necessary and unique contributions of the dentate gyrus (DG) and the medial entorhinal cortex (MEC) to phase precession.

View Article and Find Full Text PDF

Artifacts at Cardiac MRI: Imaging Appearances and Solutions.

Radiographics

January 2025

From the Department of Radiology, Cardiovascular Imaging, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., P.A.A.); Department of Radiology, Division of Cardiothoracic Imaging, Jefferson University Hospitals, Philadelphia, Pa (B.S.); Department of Radiology, Baylor Health System, Dallas, Tex (P.R.); Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR (M.Y.N.); and Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, Ohio (M.A.B.).

Cardiac MRI (CMR) is an important imaging modality in the evaluation of cardiovascular diseases. CMR image acquisition is technically challenging, which in some circumstances is associated with artifacts, both general as well as sequence specific. Recognizing imaging artifacts, understanding their causes, and applying effective approaches for artifact mitigation are critical for successful CMR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!