Metal-organic frameworks (MOFs) are used as ideal support materials thanks to their unique properties and have become the focus of interest in enzyme immobilization studies, especially in recent years. In order to increase the catalytic activity and stability of Candida rugosa lipase (CRL), a new fluorescence-based MOF (UiO-66-Nap) derived from UiO-66 was synthesized. The structures of the materials were confirmed by spectroscopic techniques such as FTIR, H NMR, SEM, and PXRD. CRL was immobilized on UiO-66-NH and UiO-66-Nap by adsorption technique and immobilization and stability parameters of UiO-66-Nap@CRL were examined. Immobilized lipases UiO-66-Nap@CRL exhibited higher catalytic activity (204 U/g) than UiO-66-NH @CRL (168 U/g), which indicates that the immobilized lipase (UiO-66-Nap@CRL) carries sulfonate groups, this is due to strong ionic interactions between the surfactant's polar groups and certain charged locations on the protein surface. The Free CRL lost its catalytic activity completely at 60 °C after 100 min, while UiO-66-NH @CRL and UiO-66-Nap@CRL retained 45 % and 56 % of their catalytic activity at the end of 120 min, respectively. After 5 cycles, the activity of UiO-66-Nap@CRL remained 50 %, while the activity of UiO-66-NH @CRL was about 40 %. This difference is due to the surfactant groups (Nap) in UiO-66-Nap@CRL. These results show that the newly synthesized fluorescence-based MOF derivative (UiO-66-Nap) can be an ideal support material for enzyme immobilization and can be used successfully to protect and increase the activities of enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2023.06.003DOI Listing

Publication Analysis

Top Keywords

catalytic activity
16
uio-66-nh @crl
12
metal-organic frameworks
8
frameworks mofs
8
ideal support
8
enzyme immobilization
8
fluorescence-based mof
8
activity
6
uio-66-nap@crl
6
surfactant-based metal-organic
4

Similar Publications

Atomically Dispersed Metal-Nitrogen-Carbon Catalysts for Acidic Oxygen Reduction Reaction.

ACS Appl Mater Interfaces

January 2025

School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.

Designing efficient and cost-effective electrocatalysts toward oxygen reduction reaction (ORR) under demanding acidic environments plays a critical role in advancing proton exchange membrane fuel cells (PEMFCs). Metal-nitrogen-carbon (M-N-C) catalysts with atomically dispersed metals have gained attention for their affordability, excellent catalytic performance, and distinctive features including consistent active sites and high atomic utilization. Over the past decade, significant achievements have been made in this field.

View Article and Find Full Text PDF

Assignment of the N-terminal domain of mouse cGAS.

Biomol NMR Assign

January 2025

Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.

Cyclic GMP-AMP synthase (cGAS) is a DNA-sensing enzyme that is a member of the nucleotidyltransferase (NTase) family and functions as a DNA sensor. The protein is comprised of a catalytic NTase core domain and an unstructured hypervariable N-terminal domain (NTD) that was reported to increase protein activity by providing an additional DNA-binding surface. We report nearly complete H, N, and C backbone chemical-shift assignments of mouse cGAS NTD (residues 5-146), obtained with a set of 3D and 4D solution NMR experiments.

View Article and Find Full Text PDF

Anisotropic Plasmon Resonance in TiCT MXene Enables Site-Selective Plasmonic Catalysis.

ACS Nano

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China.

The ever-growing interest in MXenes has been driven by their distinct electrical, thermal, mechanical, and optical properties. In this context, further revealing their physicochemical attributes remains the key frontier of MXene materials. Herein, we report the anisotropic localized surface plasmon resonance (LSPR) features in TiCT MXene as well as site-selective photocatalysis enabled by the photophysical anisotropy.

View Article and Find Full Text PDF

The position and configuration of the C═C bond have a significant impact on the spatial conformation of unsaturated lipids, which subsequently affects their biological functions. Double bond isomerization of lipids is an important mechanism of bacterial stress response, but its in-depth mechanistic study still lacks effective analytical tools. Here, we developed a visible-light-activated dual-pathway reaction system that enables simultaneous [2 + 2] cycloaddition and catalytic - isomerization of the C═C bond of unsaturated lipids via directly excited anthraquinone radicals.

View Article and Find Full Text PDF

Coordination Equilibrium-Assisted Coprecipitation Synthesis of Atomically Dispersed 3d Metal Catalysts.

ACS Appl Mater Interfaces

January 2025

School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China.

As a frontier of heterogeneous catalysis, single-atom catalysts (SACs) have been extensively studied fundamentally. One obstacle that limits the industrial application of SACs is the lack of a synthetic method that can prepare the catalysts on a large scale. Wet-chemistry methods that are conventionally used to prepare nanoparticle-based industrial catalysts might be a solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!