Anticancer properties of complexes derived from bidentate ligands.

J Inorg Biochem

Department of Chemistry, University of the Free State, South Africa. Electronic address:

Published: September 2023

Cancer is the abnormal division and multiplication of cells in an organ or tissue. It is the second leading cause of death globally. There are various types of cancer such as prostate, breast, colon, lung, stomach, liver, skin, and many others depending on the tissue or organ where the abnormal growth originates. Despite the huge investment in the development of anticancer agents, the transition of research to medications that improve substantially the treatment of cancer is less than 10%. Cisplatin and its analogs are ubiquitous metal-based anticancer agents notable for the treatment of various cancerous cells and tumors but unfortunately accompanied by large toxicities due to low selectivity between cancerous and normal cells. The improved toxicity profile of cisplatin analogs bearing bidentate ligands has motivated the synthesis of vast metal complexes of bidentate ligands. Complexes derived from bidentate ligands such as β-diketones, diolefins, benzimidazoles and dithiocarbamates have been reported to possess 20 to 15,600-fold better anticancer activity, when tested on cell lines, than some known antitumor drugs currently on the market, e.g. cisplatin, oxaliplatin, carboplatin, doxorubicin, and 5-fluorouracil. This work discusses the anticancer properties of various metal complexes derived from bidentate ligands, for possible application in chemotherapy. The results discussed were evaluated by the IC values as obtained from cell line tests on various metal-bidentate complexes. The structure-activity relationship study of the complexes discussed, revealed that hydrophobicity is a key factor that influences anticancer properties of molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2023.112268DOI Listing

Publication Analysis

Top Keywords

bidentate ligands
20
anticancer properties
12
complexes derived
12
derived bidentate
12
anticancer agents
8
cisplatin analogs
8
metal complexes
8
anticancer
6
complexes
6
bidentate
5

Similar Publications

This paper provides extensive studies of [IrCl(Ph-py)(morph-CH-terpy-κN)]PF (), [Ir(Ph-py)(morph-CH-terpy-κN)]PF (), [IrCl(Ph-py)(Ph-terpy-κN)]PF (), and [Ir(Ph-py)(Ph-terpy-κN)]PF () designed to demonstrate the possibility of controlling the photophysical properties of mono- and bis-cyclometalated complexes [IrCl(Ph-py)(R-CH-terpy-κN)]PF and [Ir(Ph-py)(R-CH-terpy-κN)]PF through a remote electron-donating substituent introduced into the 4'-position of 2,2':6',2″-terpyridine (terpy) via the phenyl linker. The attachment of the morpholinyl (morph) group was evidenced to induce dramatic changes in the emission characteristics of the monocyclometalated Ir(III) systems with coordinated R-CH-terpy ligand (κN). In solution, the obtained complex [IrCl(Ph-py)(morph-CH-terpy-κN)]PF was found to be a rare example of dual-emissive Ir(III) systems.

View Article and Find Full Text PDF

One very unique feature of oxidorhenium(v) complexes is their dual catalytic activity in both reduction of stable oxyanions like perchlorate ClO and nitrate NO as well as epoxidation of olefins. In our ongoing research efforts, we were interested to study how an electron-withdrawing ligand would affect both these catalytic reactions. Hence, we synthesized the novel bidentate dimethyloxazoline-dichlorophenol ligand HL1 and synthesized oxidorhenium(v) complex [ReOCl(L1)] (1).

View Article and Find Full Text PDF

One-Step Process for the Regiodivergent Double Hydrocyanation of 1,3-Butadiene.

Angew Chem Int Ed Engl

December 2024

Hangzhou Normal University, College of Material, Chemistry and Chemical Engineering, 2318 Yuhangtang Road, 311121, Hangzhou, CHINA.

In industry, the two important nitrile starting materials, adiponitrile and 2-methylglutaronitrile, are primarily manufactured through the well-known DuPont process, which consists of a tandem sequence including first hydrocyanation, isomerization and second hydrocyanation. However, this mature process has the intrinsic defects of step efficiency and regioselectivity. Herein, we report a nickel-catalyzed divergent, one-step double hydrocyanation of 1,3-butadiene to produce either adiponitrile or 2-methylglutaronitrile in high regioselectivity.

View Article and Find Full Text PDF

Arraying and Guest Inclusion of Soluble Metal-Organic Nanotubes Composed of Macrocyclic Paddle-Wheel Metal Complexes.

Angew Chem Int Ed Engl

December 2024

Nagoya University: Nagoya Daigaku, Department of Chemistry, Graduate School of Science, Furo-cho, Chikusa-ku, 464-8602, Nagoya, JAPAN.

A new series of metal-organic nanotubes was constructed through one-dimensional assembly using molecular triangles or molecular squares composed of paddlewheel dirhodium complexes and bidentate axial ligands. The metal-organic nanotubes were significantly different from conventional solid metal-organic framework (MOF) motifs. They exhibit good solubility owing to the branched side chains at their periphery and demonstrate high orientation capabilities in thin films owing to their anisotropic structure.

View Article and Find Full Text PDF

The crystal structure of the title compound, [Ni(CHN)(NO)]NO, at room temperature, has monoclinic (2/) symmetry. The structure displays inter-molecular hydrogen bonding. The nickel displays a distorted bipyramidal geometry with the symmetric bidentate bonded nitrate occupying an equatorial site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!