The application of negative polarity electrical pulse (↓) following positive polarity pulses (↑) may induce bipolar cancellation (BPC), a unique physiological response believed to be specific to nanosecond electroporation (nsEP). The literature lacks analysis of bipolar electroporation (BP EP) involving asymmetrical sequences composed of nanosecond and microsecond pulses. Moreover, the impact of interphase interval on BPC caused by such asymmetrical pulse needs consideration. In this study, the authors utilized the ovarian clear carcinoma cell line (OvBH-1) model to investigate the BPC with asymmetrical sequences. Cells were exposed to pulses delivered in 10-pulse bursts but as uni- or bipolar, symmetrical, or asymmetrical sequences with a duration of 600 ns or 10 µs and electric field strength equal to 7.0 or 1.8 kV/cm, respectively. It was shown that the asymmetry of pulses influences BPC. The obtained results have also been investigated in the context of calcium electrochemotherapy. The reduction of cell membrane poration, and cell survival have been observed following Ca electrochemotherapy. The effects of interphase delays (1 and 10 µs) on the BPC phenomenon were reported. Our findings show that the BPC phenomenon can be controlled using pulse asymmetry or delay between the positive and negative polarity of the pulse.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2023.108483DOI Listing

Publication Analysis

Top Keywords

asymmetrical sequences
12
bipolar cancellation
8
negative polarity
8
bpc phenomenon
8
bpc
6
bipolar
5
pulses
5
influence asymmetrical
4
asymmetrical bipolar
4
bipolar pulses
4

Similar Publications

Naturally occurring DNA inversion systems play an important role in the generation of genetic variation and adaptation in prokaryotes. Shufflon invertase (SI) from plasmid R64, recognizing asymmetric sites, has been adopted as a tool for synthetic biology. However, the availability of a single enzyme with moderate rates of recombination has hampered the more widespread use of SIs.

View Article and Find Full Text PDF

The catalytic asymmetric multicomponent acylation/rearrangement/cyclization of alkenylfurans with acyl oxime esters/arylamines or acyl oxime esters/arylamines/hydroxylamine has been developed. This method employs synergistic photoredox/Brønsted acid catalysis, enabling the efficient and versatile synthesis of multifunctionalized [3.2.

View Article and Find Full Text PDF

Peptide ion mobility adds an extra dimension of separation to mass spectrometry-based proteomics. The ability to accurately predict peptide ion mobility would be useful to expedite assay development and to discriminate true answers in a database search. There are methods to accurately predict peptide ion mobility through drift tube devices, but methods to predict mobility through high-field asymmetric waveform ion mobility (FAIMS) are underexplored.

View Article and Find Full Text PDF

Purpose: To improve the current method for MRI turbulence quantification which is the intravoxel phase dispersion (IVPD) method. Turbulence is commonly characterized by the Reynolds stress tensor (RST) which describes the velocity covariance matrix. A major source for systematic errors in MRI is the sequence's sensitivity to the variance of the derivatives of velocity, such as the acceleration variance, which can lead to a substantial measurement bias.

View Article and Find Full Text PDF

The structure of thermoset composite laminated plates is made by stacking layers of plies with different fiber orientations. Similarly, the stiffened panel structure is assembled from components with varying ply configurations, resulting in thermal residual stresses and processing-induced deformations (PIDs) during manufacturing. To mitigate the residual stresses caused by the geometric features of corner structures and the mismatch between the stiffener-skin ply orientations, which lead to PIDs in composite-stiffened panels, this study proposes a multi-objective stacking optimization strategy based on an improved adaptive genetic algorithm (IAGA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!