Hypothesis: Contact angle and sliding angle measurements are widely used to characterize superhydrophobic surfaces because of the simplicity and accessibility of the technique. We hypothesize that dynamic friction measurements, with increasing pre-loads, between a water drop and a superhydrophobic surface is more accurate because this technique is less influenced by local surface inhomogeneities and temporal surface changes.
Experiments: A water drop, held by a ring probe which is connected to a dual-axis force sensor, is sheared against a superhydrophobic surface while maintaining a constant preload. From this force-based technique, static and kinetic friction forces measurements are used to characterize the wetting properties of the superhydrophobic surfaces. Furthermore, by applying increased pre-loads to the water drop while shearing, the critical load at which the drop transitions from the Cassie-Baxter to Wenzel state is also measured.
Findings: The force-based technique predicts sliding angles with reduced standard deviations (between 56 and 64%) compared to conventional optical-based measurements. Kinetic friction force measurements show a higher accuracy (between 35 and 80%) compared to static friction force measurements in characterizing the wetting properties of superhydrophobic surfaces. The critical loads for the Cassie-Baxter to Wenzel state transition allows for stability characterization between seemingly similar superhydrophobic surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.05.161 | DOI Listing |
Biomater Sci
January 2025
Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China.
Nature-inspired superhydrophobic materials have attracted considerable interest in blood-contacting biomedical applications due to their remarkable water-repellent and self-cleaning properties. However, the interaction mechanism between blood components and superhydrophobic surfaces remains unclear. To explore the effect of trapped air on platelet adhesion, we designed four distinct hydrophobic titanium dioxide (TiO) nanostructures with different fractions of trapped air.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Antireflection (AR) coatings with mechanical robustness and superhydrophobic properties have wide potential applications in optical, electronic, and automotive fields. However, the fabrication of large-sized, robust, and multifunctional AR coatings on plastic/polymer substrates has been a challenging problem. In this study, we developed a bottom-up approach to produce mechanically robust, enhanced transmittance, and superhydrophobic coatings on poly(methyl methacrylate) (PMMA) substrate.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China. Electronic address:
The depletion of lubricants in (slippery liquid-infused porous surfaces) SLIPS poses a significant challenge to their long-term functionality. While line-shaped rough structures can mitigate lubricant loss to some extent, they often fail to provide the stability required for sustained performance. In this study, we present a novel porous nanoflower aluminum alloy slippery liquid-infused surface (P-NF-AA SLIPS), which integrates a porous framework with a rough nanoflower structure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
Polyurethane sponge is frequently selected as a substrate material for constructing flexible compressible sensors due to its excellent resilience and compressibility. However, being highly hydrophilic and flammable, it not only narrows the range of use of the sensor but also poses a great potential threat to human safety. In this paper, a conductive flexible piezoresistive sensor (CHAP-PU) with superhydrophobicity and high flame retardancy was prepared by a simple dip-coating method using A-CNTs/HGM/ADP coatings deposited on the surface of a sponge skeleton and modified with polydimethylsiloxane.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Biological Engineering, Xinxiang Institute of Engineering, Xinxiang 453700, China.
A self-healing superhydrophobic coating was successfully prepared in the present work. The coating comprised PEG (polyethylene glycol) and FeO nanoparticles modified with stearic acid (SA) via hydrogen bonds, using polyamide resin and epoxy as binders. The chemically damaged surface could restore its original superhydrophobic structure and chemical composition after 4 h at room temperature or 10 min of heating in an oven with a self-healing efficiency of 95.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!