A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The histone deacetylase inhibitor SAHA exerts a protective effect against myocardial ischemia/reperfusion injury by inhibiting sodium-calcium exchanger. | LitMetric

The histone deacetylase inhibitor SAHA exerts a protective effect against myocardial ischemia/reperfusion injury by inhibiting sodium-calcium exchanger.

Biochem Biophys Res Commun

Department of Cardiology, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Hebei International Joint Research Center for Structural Heart Disease, Hebei Engineering Research Center of Intelligent Medical Clinical Application, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China. Electronic address:

Published: September 2023

Calcium overload performs a crucial function in the pathogenesis of myocardial ischemia-reperfusion (I/R) damage, which contributes to mitochondrial impairment and apoptosis of cardiomyocytes. Suberoylanilide hydroxamic acid (SAHA), a small molecule histone deacetylases inhibitor with modulatory capacity on Na-Ca exchanger (NCX), is proven to have protective potential towards cardiac remodeling and injury, but the mechanism remains unclear. Hence, Hence, our present research explored the modulation of NCX-Ca-CaMKII by SAHA in myocardial I/R damage. Our outcomes indicate that in vitro hypoxia and reoxygenation models of myocardial cells, SAHA treatment inhibited the increase in expression of NCX1, intracellular Ca concentration, expression of CaMKII and self-phosphorylated CaMKII, and cell apoptosis. In addition, SAHA treatment improved myocardial cell mitochondrial swelling inhibited mitochondrial membrane potential diminution and the openness of the mitochondrial permeability transition pore, and protected against mitochondrial dysfunction following I/R injury. In vivo, SAHA treatment alleviated the decrease in FS% and EF%, the increase in the myocardial infarct area, and myocardial enzyme levels caused by I/R injury, while also reducing myocardial cell apoptosis, and inhibiting mitochondrial fission and mitochondrial membrane rupture. These results indicated that SAHA treatment alleviated myocardial cell apoptosis as well as mitochondrial dysfunction resulting from myocardial I/R impairment, and contributed to myocardial function recovery by inhibiting the NCX-Ca-CaMKII pathway. These findings offered additional theoretical support to explore the mechanism of SAHA as a therapeutic agent in cardiac I/R damage and develop new treatment strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2023.05.120DOI Listing

Publication Analysis

Top Keywords

saha treatment
16
i/r damage
12
cell apoptosis
12
myocardial cell
12
myocardial
11
saha
8
mitochondrial
8
myocardial i/r
8
mitochondrial membrane
8
mitochondrial dysfunction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!