A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Forecasting Pathogen Dynamics with Bayesian Model-Averaging: Application to Xylella fastidiosa. | LitMetric

Forecasting invasive-pathogen dynamics is paramount to anticipate eradication and containment strategies. Such predictions can be obtained using a model grounded on partial differential equations (PDE; often exploited to model invasions) and fitted to surveillance data. This framework allows the construction of phenomenological but concise models relying on mechanistic hypotheses and real observations. However, it may lead to models with overly rigid behavior and possible data-model mismatches. Hence, to avoid drawing a forecast grounded on a single PDE-based model that would be prone to errors, we propose to apply Bayesian model averaging (BMA), which allows us to account for both parameter and model uncertainties. Thus, we propose a set of different competing PDE-based models for representing the pathogen dynamics, we use an adaptive multiple importance sampling algorithm (AMIS) to estimate parameters of each competing model from surveillance data in a mechanistic-statistical framework, we evaluate the posterior probabilities of models by comparing different approaches proposed in the literature, and we apply BMA to draw posterior distributions of parameters and a posterior forecast of the pathogen dynamics. This approach is applied to predict the extent of Xylella fastidiosa in South Corsica, France, a phytopathogenic bacterium detected in situ in Europe less than 10 years ago (Italy 2013, France 2015). Separating data into training and validation sets, we show that the BMA forecast outperforms competing forecast approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10257384PMC
http://dx.doi.org/10.1007/s11538-023-01169-wDOI Listing

Publication Analysis

Top Keywords

pathogen dynamics
12
xylella fastidiosa
8
surveillance data
8
model
6
forecasting pathogen
4
dynamics
4
dynamics bayesian
4
bayesian model-averaging
4
model-averaging application
4
application xylella
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!