Live-Imaging Detection of Multivesicular Body-Plasma Membrane Fusion and Exosome Release in Cultured Primary Neurons.

Methods Mol Biol

Department of Molecular Biology, Cell Biology and Biochemistry; and Carney Institute for Brain Science, Brown University, Laboratories for Molecular Medicine, Providence, RI, USA.

Published: June 2023

Exosomes represent a class of extracellular vesicles (EVs) derived from the endocytic pathway that is important for cell-cell communication and implicated in the spread of pathogenic protein aggregates associated with neurological diseases. Exosomes are released extracellularly when multivesicular bodies (also known as late endosomes) fuse with the plasma membrane (PM). An important breakthrough in exosome research is the ability to capture MVB-PM fusion and exosome release simultaneously in individual cells using live-imaging microscopy techniques. Specifically, researchers have created a construct fusing CD63, a tetraspanin enriched in exosomes, with the pH-sensitive reporter pHluorin whereby CD63-pHluorin fluorescence is quenched in the acidic MVB lumen and only fluoresces when released into the less acidic extracellular environment. Here, we describe a method using this CD63-pHluorin construct to visualize MVB-PM fusion/exosome secretion in primary neurons using total internal reflection fluorescence (TIRF) microscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3287-1_17DOI Listing

Publication Analysis

Top Keywords

fusion exosome
8
exosome release
8
primary neurons
8
live-imaging detection
4
detection multivesicular
4
multivesicular body-plasma
4
body-plasma membrane
4
membrane fusion
4
release cultured
4
cultured primary
4

Similar Publications

Ferroptosis is a type of cell death that multiple mechanisms and pathways contribute to the positive and negative regulation of it. For example, increased levels of reactive oxygen species (ROS) induce ferroptosis. ferroptosis unlike apoptosis, it is not dependent on caspases, but is dependent on iron.

View Article and Find Full Text PDF

In the realm of gene therapy, given the exceptional performance of native exosomes, researchers have redirected their innovative focus towards exosome-mimetic nanovesicles (EMNs); however, the current design of most EMNs relies heavily on native cells or their components, inevitably introducing inter-batch variability issues and posing significant challenges for quality control. To overcome the excessive reliance on native cellular components, this study adopts a unique approach by precisely mimicking the lipid composition of exosomes and innovatively incorporating histone components to recapitulate the gene transfer characteristics of exosomes. We selected sphingomyelin (SM), phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE), and cholesterol as the lipid components, and employed the double emulsion method to prepare biomimetic exosomes carrying histone A and PEDF-DNA plasmids (His-pDNA@EMNs).

View Article and Find Full Text PDF

Barcoded Hybrids of Extracellular Vesicles and Lipid Nanoparticles for Multiplexed Analysis of Tissue Distribution.

Adv Sci (Weinh)

January 2025

Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 43150, Sweden.

Targeted delivery of therapeutic agents is a persistent challenge in modern medicine. Recent efforts in this area have highlighted the utility of extracellular vesicles (EVs) as drug carriers, given that they naturally occur in bloodstream and tissues, and can be loaded with a wide range of therapeutic molecules. However, biodistribution and tissue tropism of EVs remain difficult to study systematically.

View Article and Find Full Text PDF

Presenilins as hub proteins controlling the endocytic and autophagic pathways and small extracellular vesicle secretion.

J Extracell Vesicles

January 2025

IPMC, UMR7275 CNRS-UniCA, INSERM U1323, team certified "Laboratory of Excellence (LABEX) Distalz", Valbonne, France.

Emerging evidence indicates that autophagy is tightly connected to the endocytic pathway. Here, we questioned the role of presenilins (PSENs 1 and 2), previously shown to be involved in autophagy regulation, in the secretion of small endocytic-originating extracellular vesicles known as exosomes. Indeed, while wild-type cells responded to stimuli promoting both multivesicular endosome (MVE) formation and secretion of small extracellular vesicles (sEVs) enriched in canonical exosomal proteins, PSEN-deficient cells were almost unaffected to these stimuli.

View Article and Find Full Text PDF

Dense-core vesicles (DCVs) are found in various types of cells, such as neurons, pancreatic β-cells, and chromaffin cells. These vesicles release transmitters, peptides, and hormones to regulate diverse functions, such as the stress response, immune response, behavior, and blood glucose levels. In traditional electron microscopy after chemical fixation, it is often reported that the dense cores occupy a portion of the vesicle towards the center and are surrounded by a clear halo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!