Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Region-specific brain organoids, such as dorsal forebrain brain organoid, have become increasingly useful to model early brain development. Importantly, these organoids provide an avenue to investigate mechanisms underlying neurodevelopmental disorders, as they undergo developmental milestones resembling early neocortical formation. These milestones include the generation of neural precursors which transition into intermediate cell types and subsequently to neurons and astrocytes, as well as the fulfillment of key neuronal maturation events such as synapse formation and pruning. Here we describe how to generate free-floating dorsal forebrain brain organoids from human pluripotent stem cells (hPSCs). We also describe validation of the organoids via cryosectioning and immunostaining. Additionally, we include an optimized protocol that allows high-quality dissociation of the brain organoids to live single cells, a critical step for downstream single-cell assays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3287-1_13 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!