Multidrug-resistant (MDR) bacteria are considered a health threat worldwide, and this problem is set to increase over the decades. The ESKAPE, a group of six pathogens including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. is the major source of concern due to their high death incidence and nosocomial acquired infection. Host defence peptides (HDPs) are a class of ribosomally synthesised peptides that have shown promising results in combating MDR, including the ESKAPE group, in- and outside bacterial biofilms. However, their poor pharmacokinetics in physiological mediums may impede HDPs from becoming viable clinical candidates. To circumvent this problem, chemical engineering of HDPs has been seen as an emergent approach to not only improve their pharmacokinetics but also their efficacy against pathogens. In this review, we explore several chemical modifications of HDPs that have shown promising results, especially against ESKAPE pathogens, and provide an overview of the current findings with respect to each modification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10432368PMC
http://dx.doi.org/10.1007/s40259-023-00608-3DOI Listing

Publication Analysis

Top Keywords

host defence
8
defence peptides
8
eskape group
8
going host
4
peptides
4
peptides horizons
4
horizons chemically
4
chemically engineered
4
engineered peptides
4
peptides multidrug-resistant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!