Isolation of Cancer Cells from Liquid Biopsies Using 3D-Printed Affinity Devices.

Methods Mol Biol

Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.

Published: June 2023

Liquid biopsies are examination procedures for deciding the grouping of malignant growth cells tracked down in samples of blood and other body fluids. Liquid biopsies are likewise significantly less intrusive than tissue biopsies as they just require small amount of blood or body fluids from the patient. With the utilization of microfluidics, cancer cells can be isolated from the fluid biopsy and achieve early diagnosis. 3D printing is turning out to be progressively well known for microfluidic devices creation. 3D printing has shown multiple advantages compared to traditional microfluidic devices production, including effortless large-scale manufacturing of precise copies, the fuse of new materials, and execution of additional complicated or drawn-out plans that are hard to execute in conventional microfluidic devices. Combining 3D printing with microfluidics makes for a relatively inexpensive analysis of liquid biopsies with a chip that can be more advantageous to use over traditional microfluidic chips. In this chapter, a method for affinity-based separation of cancer cells in a liquid biopsy using a 3D microfluidic chip will be discussed, along with the rationale behind the method.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3271-0_16DOI Listing

Publication Analysis

Top Keywords

liquid biopsies
16
cancer cells
12
microfluidic devices
12
cells liquid
8
blood body
8
body fluids
8
traditional microfluidic
8
liquid
5
biopsies
5
microfluidic
5

Similar Publications

Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is an aggressive disease with a high relapse rate. In this study, we map the metabolic profile of CD34(CD38) AML cells and the extracellular vesicle signatures in circulation from AML patients at diagnosis. CD34 AML cells display high antioxidant glutathione levels and enhanced mitochondrial functionality, both associated with poor clinical outcomes.

View Article and Find Full Text PDF

Electrochemical Biosensors for Cancer Diagnosis: Multitarget Analysis to Present Molecular Characteristics of Tumor Heterogeneity.

JACS Au

December 2024

Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, China.

Electrochemical biosensors are gaining attention as powerful tools in cancer diagnosis, particularly in liquid biopsy, due to their high efficiency, rapid response, exceptional sensitivity, and specificity. However, the complexity of intra- and intertumor heterogeneity, with variations in genetic and protein expression profiles and epigenetic modifications, makes electrochemical biosensors susceptible to false-positive or false-negative diagnostic outcomes. To address this challenge, there is growing interest in simultaneously analyzing multiple biomarkers to reveal molecular characteristics of tumor heterogeneity for precise cancer diagnosis.

View Article and Find Full Text PDF

Prognostic and Predictive Biomarkers of Oligometastatic NSCLC: New Insights and Clinical Applications.

JTO Clin Res Rep

December 2024

Department of Pulmonary Diseases, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands.

This review discusses the current data on predictive and prognostic biomarkers in oligometastatic NSCLC and discusses whether biomarkers identified in other stages and widespread metastatic disease can be extrapolated to the oligometastatic disease (OMD) setting. Research is underway to explore the prognostic and predictive value of biological attributes of tumor tissue, circulating cells, the tumor microenvironment, and imaging findings as biomarkers of oligometastatic NSCLC. Biomarkers that help define true OMD and predict outcomes are needed for patient selection for oligometastatic treatment, and to avoid futile treatments in patients that will not benefit from locoregional treatment.

View Article and Find Full Text PDF

Introduction: Programmed death-ligand 1 (PD-L1) is the main predictive biomarker used to identify patients with NSCLC who are eligible for treatment with immune checkpoint inhibitors. Despite its utility, the predictive capacity of PD-L1 is limited, necessitating the exploration of supplementary predictive biomarkers. In this report, we describe the prognostic value of / mutation status for overall survival (OS) in patients with NSCLC treated with first-line immunotherapy or combined chemoimmunotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!