The main aim of this study was to develop and monitor an effective and cost-efficient industrial wastewater treatment system that utilizes sand, fly ash, and hearth ash. The latter two are potentially available and inexpensive industrial waste materials that can be used for filtration. The infiltration percolation method was utilized in a vertical cylindrical column to filter the raw wastewater from a detergent manufacturing plant. The main parameters analyzed before and after treatment included suspended solids (SS), chemical oxygen demand (COD), biochemical oxygen demand (BOD), and pH. The system successfully achieved significant reductions, including 89% in COD, 73% in BOD, and 54% in suspended solids (SS), along with a 66% to 99% reduction in heavy metals. The COD/BOD rejection ratio decreased from above 4.24 before treatment to below 1.73 after treatment. Furthermore, impedance measurements were carried out across the frequency range of 100 to 1 MHz. The analysis of complex conductivity spectra revealed two Cole-Cole relaxation behaviors, and an equivalent circuit was developed to extract the primary parameters and further investigate both relaxation processes. The results of the electrical parameters deduced from the impedance spectra demonstrated a strong correlation with the parameters obtained through conventional methods.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-023-11433-0DOI Listing

Publication Analysis

Top Keywords

industrial wastewater
8
conventional methods
8
suspended solids
8
oxygen demand
8
monitoring treatment
4
treatment industrial
4
wastewater conventional
4
methods impedance
4
impedance spectroscopy
4
spectroscopy main
4

Similar Publications

Azo dyes constitute 60-70% of commercially used dyes and are complex, carcinogenic, and mutagenic pollutants that negatively impact soil composition, water bodies, flora, and fauna. Conventional azo dye degradation techniques have drawbacks such as high production and maintenance costs, use of hazardous chemicals, membrane clogging, and sludge generation. Constructed Wetland-Microbial Fuel Cells (CW-MFCs) offer a promising sustainable approach for the bio-electrodegradation of azo dyes from textile wastewater.

View Article and Find Full Text PDF

For the effective removal of phenol from the environment, photocatalytic synergistic adsorption is currently one of the key methods. By leveraging the polysaccharide backbone structure of sodium alginate (SA),Zinc hydroxystannate (ZHS) was introduced into the gel structure using a co-precipitation technique. Additionally, gangue waste was repurposed through a polymerization reaction.

View Article and Find Full Text PDF

As the global consumption of pharmaceuticals increases, so does their release into water bodies. The effects, although not fully understood, can be detrimental to aquatic ecosystems and human health. The new Urban Wastewater Treatment Directive (UWWTD) in European Union requires implementation of quaternary wastewater treatment processes to limit the loads of pharmaceuticals reaching water bodies.

View Article and Find Full Text PDF

Thiocyanate (SCN) is a highly toxic reducing inorganic compound commonly found in various nitrogen-rich wastewater and is also a promising electron donor for mixotrophic denitrification. However, its extent of involvement in mixotrophic denitrification under conditions of carbon limitation or excess remains unclear. In this study, five reactors were constructed to investigate the participation and microbial mechanisms of SCN in mixotrophic denitrification under high C/N and low C/N conditions.

View Article and Find Full Text PDF

Advancements in functional adsorbents for sustainable recovery of rare earth elements from wastewater: A comprehensive review of performance, mechanisms, and applications.

Adv Colloid Interface Sci

January 2025

School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China.

Rare earth elements (REEs) are crucial metallic resources that play an essential role in national economies and industrial production. The reclaimation of REEs from wastewater stands as a significant supplementary strategy to bolster the REEs supply. Adsorption techniques are widely recognized as environmentally friendly and sustainable methods for the separation of REEs from wastewater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!