Decellularized periosteum promotes guided bone regeneration via manipulation of macrophage polarization.

Biotechnol J

Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China.

Published: October 2023

Periosteum has shown potential as an effective barrier membrane for guided bone regeneration (GBR). However, if recognized as a "foreign body," insertion of a barrier membrane in GBR treatment will inevitably alter the local immune microenvironment and subsequently influence bone regeneration. The aim of this investigation was to fabricate decellularized periosteum (DP) and investigate its immunomodulatory properties in GBR. DP was successfully fabricated from periosteum from the mini-pig cranium. In vitro experiments indicated that the DP scaffold modulated macrophage polarization toward a pro-regenerative M2 phenotype, which in turn facilitated migration and osteogenic differentiation of bone marrow-derived mesenchymal stem cells. A rat GBR model with a cranial critical-size defect was established, and our in vivo experiment confirmed the beneficial effects of DP on the local immune microenvironment and bone regeneration. Collectively, the findings of this study indicate that the prepared DP possesses immunomodulatory properties and represents a promising barrier membrane for GBR procedures.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.202300094DOI Listing

Publication Analysis

Top Keywords

bone regeneration
16
barrier membrane
12
decellularized periosteum
8
guided bone
8
macrophage polarization
8
membrane gbr
8
local immune
8
immune microenvironment
8
immunomodulatory properties
8
bone
5

Similar Publications

Regulation of T Cell Glycosylation by MXene/β-TCP Nanocomposite for Enhanced Mandibular Bone Regeneration.

Adv Healthc Mater

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.

View Article and Find Full Text PDF

3D Printing of a Self-Healing, Bioactive, and Dual-Cross-Linked Polysaccharide-Based Composite Hydrogel as a Scaffold for Bone Tissue Engineering.

ACS Appl Bio Mater

January 2025

Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.

Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.

View Article and Find Full Text PDF

Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).

View Article and Find Full Text PDF

Bone marrow stimulation treatment by bone marrow stromal cells (BMSCs) released from the bone medullary cavity and differentiated into cartilage via microfracture surgery is a frequently employed technique for treating articular cartilage injuries, yet the treatment presents a main drawback of poor cartilage regeneration in the elderly. Prior research indicated that aging could decrease the stemness capacity of BMSCs, thus we made a hypothesis that increasing old BMSCs (OBMSCs) stemness might improve the results of microfracture in the elderly. First, we investigated the correlation between microfracture outcomes and BMSCs stemness using clinical data and animal experiments.

View Article and Find Full Text PDF

This case report aimed to illustrate the management of single tooth replacement in the esthetic region using immediate implant placement, highlighting the importance of interdisciplinary treatment planning and adherence to esthetic principles. A 37-year-old female presented with a fractured upper front tooth, necessitating immediate attention to restore esthetic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!