Until now, poly(3,4-ethylenedioxythiophene):poly(styrensulfonate) (PEDOT:PSS) is widely used in Sn-Pb perovskite solar cells (PSCs) due to its many advantages, including high optical transparency, suitable conductivity, superior wettability, and so on. However, the acidic and hydroscopic properties of the PSS component, as well as the incongruous energy level of the hole transport layer (HTL), may lead to unsatisfying interface properties and decreased device performance. Herein, by adding polyethylene glycol dimethacrylate (PEGDMA) into PEDOT:PSS, a newly crosslinked-double-network obtain of PEDOT:PSS@PEGDMA film, which could not only optimize nucleation and crystallinity of Sn-Pb perovskite films, but also suppress defect density and optimize energy level alignment at the HTL/perovskite interface. As a result, the achieves highly efficient and stable mixed Sn-Pb PSCs with an encouraging power conversion efficiency of 20.9%. Additionally, the device can maintain good stability under N atmosphere.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202303159 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!