A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Leader-Based Flocking of Multiple Swarm Robots in Underwater Environments. | LitMetric

Leader-Based Flocking of Multiple Swarm Robots in Underwater Environments.

Sensors (Basel)

System Engineering Department, Sejong University, Seoul 05006, Republic of Korea.

Published: June 2023

Considering underwater environments, this paper tackles flocking of multiple swarm robots utilizing one leader. The mission of swarm robots is to reach their goal while not colliding with a priori unknown 3D obstacles. In addition, the communication link among the robots needs to be preserved during the maneuver. Only the leader has sensors for localizing itself while accessing the global goal position. Every robot, except for the leader, can measure the relative position and the ID of its neighboring robots by utilizing proximity sensors such as Ultra-Short BaseLine acoustic positioning (USBL) sensors. Under the proposed flocking controls, multiple robots flock inside a 3D virtual sphere while preserving communication connectivity with the leader. If necessary, all robots rendezvous at the leader to increase connectivity among the robots. The leader herds all robots to reach the goal safely, while the network connectivity is maintained in cluttered underwater environments. To the best of our knowledge, our article is novel in developing underwater flocking controls utilizing one leader, so that a swarm of robots can safely flock to the goal in a priori unknown cluttered environments. MATLAB simulations were utilized to validate the proposed flocking controls in underwater environments with many obstacles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256109PMC
http://dx.doi.org/10.3390/s23115305DOI Listing

Publication Analysis

Top Keywords

swarm robots
16
underwater environments
16
flocking controls
12
robots
10
flocking multiple
8
multiple swarm
8
robots utilizing
8
utilizing leader
8
robots reach
8
reach goal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!