An automatic determination of grape must ingredients during the harvesting process would support cellar logistics and enables an early termination of the harvest if quality parameters are not met. One of the most important quality-determining characteristics of grape must is its sugar and acid content. Among others, the sugars in particular determine the quality of the must and wine. Chiefly in wine cooperatives, in which a third of all German winegrowers are organized, these quality characteristics serve as the basis for payment. They are acquired upon delivery at the cellar of the cooperative or the winery and result in the acceptance or rejection of grapes and must. The whole process is very time-consuming and expensive, and sometimes grapes that do not meet the quality requirements for sweetness, acidity, or healthiness are destroyed or not used at all, which leads to economic loss. Near-infrared spectroscopy is now a widely used technique to detect a wide variety of ingredients in biological samples. In this study, a miniaturized semi-automated prototype apparatus with a near-infrared sensor and a flow cell was used to acquire spectra (1100 nm to 1350 nm) of grape must at defined temperatures. Data of must samples from four different red and white (L.) varieties were recorded throughout the whole growing season of 2021 in Rhineland Palatinate, Germany. Each sample consisted of 100 randomly sampled berries from the entire vineyard. The contents of the main sugars (glucose and fructose) and acids (malic acid and tartaric acid) were determined with high-performance liquid chromatography. Chemometric methods, using partial least-square regression and leave-one-out cross-validation, provided good estimates of both sugars (RMSEP = 6.06 g/L, = 89.26%), as well as malic acid (RMSEP = 1.22 g/L, = 91.10%). The coefficient of determination () was comparable for glucose and fructose with 89.45% compared to 89.08%, respectively. Although tartaric acid was predictable for only two of the four varieties using near-infrared spectroscopy, calibration and validation for malic acid were accurate for all varieties in an equal extent like the sugars. These high prediction accuracies for the main quality determining grape must ingredients using this miniaturized prototype apparatus might enable an installation on a grape harvester in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256027 | PMC |
http://dx.doi.org/10.3390/s23115287 | DOI Listing |
Dev Sci
March 2025
Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.
Newborns are able to neurally discriminate between speech and nonspeech right after birth. To date it remains unknown whether this early speech discrimination and the underlying neural language network is associated with later language development. Preterm-born children are an interesting cohort to investigate this relationship, as previous studies have shown that preterm-born neonates exhibit alterations of speech processing and have a greater risk of later language deficits.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Prosthodontics, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
Zinc (Zn) and its alloys are promising biomaterials for orthopedic applications due to their degradability and mechanical properties. Zn plays a crucial role in bone formation, but excessive early release may cause cytotoxicity and inhibit osseointegration. To solve this, we developed a near-infrared (NIR) light-controlled polycaprolactone/copper-sulfur (PCL/CuS) coating that slows degradation and enhances osseointegration of Zn alloys.
View Article and Find Full Text PDFOsteoarthr Cartil Open
March 2025
Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka, Japan.
Objective: To investigate whether there is a difference in hardness and hemoglobin concentration changes in the infrapatellar fat pad (IFP) during isometric quadriceps exercise (IQE) in patients with knee osteoarthritis (KOA) between those with and without knee extension limitation.
Design: In this cross-sectional study, data were collected at an orthopedic clinic from March 2022 to April 2023. Among patients diagnosed with KOA, those with knee joint extension range of motion <0° and >0° were defined as the limited group (n = 16) and non-limited group (n = 13), respectively.
Nanoscale Horiz
January 2025
Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Upconverting nanoparticles (UCNPs) convert near-infrared (IR) light into higher-energy visible light, allowing them to be used in applications such as biological imaging, nano-thermometry, and photodetection. It is well known that the upconversion luminescent efficiency of UCNPs can be enhanced by using a host material with low phonon energies, but the use of low-vibrational-energy inorganic ligands and non-epitaxial shells has been relatively underexplored. Here, we investigate the functionalization of lanthanide-doped NaYF UCNPs with low-vibrational-energy SnS ligands.
View Article and Find Full Text PDFFluids Barriers CNS
January 2025
Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan.
Background: Cerebral autoregulation is a robust regulatory mechanism that stabilizes cerebral blood flow in response to reduced blood pressure, thereby preventing cerebral ischaemia. Scientists have long believed that cerebral autoregulation also stabilizes cerebral blood flow against increases in intracranial pressure, which is another component that determines cerebral perfusion pressure. However, this idea was inconsistent with the complex pathogenesis of normal pressure hydrocephalus, which includes components of chronic cerebral ischaemia due to mild increases in intracranial pressure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!