We introduce a technique to generate and read the digital signature of the networks, channels, and optical devices that possess the fiber-optic pigtails to enhance physical layer security (PLS). Attributing a signature to the networks or devices eases the identification and authentication of networks and systems thus reducing their vulnerability to physical and digital attacks. The signatures are generated using an optical physical unclonable function (OPUF). Considering that OPUFs are established as the most potent anti-counterfeiting tool, the created signatures are robust against malicious attacks such as tampering and cyber attacks. We investigate Rayleigh backscattering signal (RBS) as a strong OPUF to generate reliable signatures. Contrary to other OPUFs that must be fabricated, the RBS-based OPUF is an inherent feature of fibers and can be easily obtained using optical frequency domain reflectometry (OFDR). We evaluate the security of the generated signatures in terms of their robustness against prediction and cloning. We demonstrate the robustness of signatures against digital and physical attacks confirming the unpredictability and unclonability features of the generated signatures. We explore signature cyber security by considering the random structure of the produced signatures. To demonstrate signature reproducibility through repeated measurements, we simulate the signature of a system by adding a random Gaussian white noise to the signal. This model is proposed to address services including security, authentication, identification, and monitoring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256015 | PMC |
http://dx.doi.org/10.3390/s23115269 | DOI Listing |
Nanophotonics
January 2024
Department of Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
High-capacity optical interconnects with short reach are hugely demanded driven by the exponential growth of data traffic. In this work, four-channel wavelength division multiplexing (WDM) uplink/downlink twin single-sideband (twin-SSB) signals are implemented by a wavelength selective switch (WSS) at once, which simplifies the structure of multi-channel SSB transmitters and reduces the cost of high-capacity optical interconnect. Compared to a double sideband scheme, it has been experimentally proven that the performance of SSB transmission over standard single-mode fiber (SSMF) at C-band with an ultra-high baud rate has been greatly improved, which has the ability to effectively overcome the power fading induced by chromatic dispersion in an intensity modulation and direct detection (IM/DD) system.
View Article and Find Full Text PDFThe microphysical changes in cloud formation and development are closely related to the vertical air motions. It is difficult to simultaneously detect microphysical parameters of drizzle and vertical air motions. This study proposes a method for the drizzle microphysical property and vertical air motions retrieval using Doppler lidar and radar measurements.
View Article and Find Full Text PDFA noise reduction method based on the block-matching and 4D (BM4D) scheme is proposed to improve the signal-to-noise ratio (SNR) in distributed vibration sensing (DVS) systems. In the proposed scheme, the original Rayleigh backscattering (RBS) signal is converted into a three-dimensional image containing Rayleigh trajectory and energy information. The correlation between the time-domain and spatial-domain signals is then used to achieve the denoising operation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!