A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Microstrip Transmission Line Biosensor to Measure the Interaction between Microliter Aqueous Solutions and 1.0-17.0 GHz Radio Frequencies. | LitMetric

Radio frequency (RF) biosensors are an expanding field of interest because of the ability to design noninvasive, label-free, low-production-cost sensing devices. Previous works identified the need for smaller experimental devices, requiring nanoliter to milliliter sampling volumes and increased capability of repeatable and sensitive measurement capability. The following work aims to verify a millimeter-sized, microstrip transmission line biosensor design with a microliter well operating on a broadband radio frequency range of 1.0-17.0 GHz. Three successive experiments were performed to provide evidence for (1) repeatability of measurements after loading/unloading the well, (2) sensitivity of measurement sets, and (3) methodology verification. Materials under test (MUTs) loaded into the well included deionized water, Tris-EDTA buffer, and lambda DNA. S-parameters were measured to determine interaction levels between the radio frequencies and MUTs during the broadband sweep. MUTs increasing in concentration were repeatably detected and demonstrated high measurement sensitivity, with the highest error value observed being 0.36%. Comparing Tris-EDTA buffer versus lambda DNA suspended in Tris-EDTA buffer suggests that introducing lambda DNA into the Tris-EDTA buffer repeatably alters S-parameters. The innovative aspect of this biosensor is that it can measure interactions of electromagnetic energy and MUTs in microliter quantities with high repeatability and sensitivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255756PMC
http://dx.doi.org/10.3390/s23115193DOI Listing

Publication Analysis

Top Keywords

tris-edta buffer
16
lambda dna
12
microstrip transmission
8
transmission biosensor
8
biosensor measure
8
10-170 ghz
8
radio frequencies
8
radio frequency
8
measure interaction
4
interaction microliter
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!