Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Spectroscopic microtomography provides the ability to perform 4D (3D structural and 1D chemical) imaging of a thick microscopic specimen. Here, we demonstrate spectroscopic microtomography in the short-wave infrared (SWIR) wavelength using digital holographic tomography, which captures both the absorption coefficient and refractive index. A broadband laser in tandem with a tunable optical filter allows us to scan the wavelength from 1100 to 1650 nm. Using the developed system, we measure human hair and sea urchin embryo samples. The resolution estimated with gold nanoparticles is 1.51 μm (transverse) and 1.57 μm (axial) for the field of view of 307 × 246 μm2. The developed technique will enable accurate and efficient analyses of microscopic specimens that have a distinctive absorption or refractive index contrast in the SWIR range.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255538 | PMC |
http://dx.doi.org/10.3390/s23115164 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!