A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Energy-Efficient and Variability-Resilient 11T SRAM Design Using Data-Aware Read-Write Assist (DARWA) Technique for Low-Power Applications. | LitMetric

The need for power-efficient devices, such as smart sensor nodes, mobile devices, and portable digital gadgets, is markedly increasing and these devices are becoming commonly used in daily life. These devices continue to demand an energy-efficient cache memory designed on Static Random-Access Memory (SRAM) with enhanced speed, performance, and stability to perform on-chip data processing and faster computations. This paper presents an energy-efficient and variability-resilient 11T (EVR11T) SRAM cell, which is designed with a novel Data-Aware Read-Write Assist (DARWA) technique. The EVR11T cell comprises 11 transistors and operates with single-ended read and dynamic differential write circuits. The simulated results in a 45 nm CMOS technology exhibit 71.63% and 58.77% lower read energy than ST9T and LP10T and lower write energies of 28.25% and 51.79% against S8T and LP10T cells, respectively. The leakage power is reduced by 56.32% and 40.90% compared to ST9T and LP10T cells. The read static noise margin (RSNM) is improved by 1.94× and 0.18×, while the write noise margin (WNM) is improved by 19.57% and 8.70% against C6T and S8T cells. The variability investigation using the Monte Carlo simulation on 5000 samples highly validates the robustness and variability resilience of the proposed cell. The improved overall performance of the proposed EVR11T cell makes it suitable for low-power applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255441PMC
http://dx.doi.org/10.3390/s23115095DOI Listing

Publication Analysis

Top Keywords

energy-efficient variability-resilient
8
variability-resilient 11t
8
data-aware read-write
8
read-write assist
8
assist darwa
8
darwa technique
8
low-power applications
8
evr11t cell
8
st9t lp10t
8
lp10t cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!