This paper presents a novel approach for counting hand-performed activities using deep learning and inertial measurement units (IMUs). The particular challenge in this task is finding the correct window size for capturing activities with different durations. Traditionally, fixed window sizes have been used, which occasionally result in incorrectly represented activities. To address this limitation, we propose segmenting the time series data into variable-length sequences using ragged tensors to store and process the data. Additionally, our approach utilizes weakly labeled data to simplify the annotation process and reduce the time to prepare annotated data for machine learning algorithms. Thus, the model receives only partial information about the performed activity. Therefore, we propose an LSTM-based architecture, which takes into account both the ragged tensors and the weak labels. To the best of our knowledge, no prior studies attempted counting utilizing variable-size IMU acceleration data with relatively low computational requirements using the number of completed repetitions of hand-performed activities as a label. Hence, we present the data segmentation method we employed and the model architecture that we implemented to show the effectiveness of our approach. Our results are evaluated using the Skoda public dataset for Human activity recognition (HAR) and demonstrate a repetition error of ±1 even in the most challenging cases. The findings of this study have applications and can be beneficial for various fields, including healthcare, sports and fitness, human-computer interaction, robotics, and the manufacturing industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255870PMC
http://dx.doi.org/10.3390/s23115057DOI Listing

Publication Analysis

Top Keywords

weakly labeled
8
acceleration data
8
data variable-length
8
deep learning
8
hand-performed activities
8
ragged tensors
8
data
7
counting activities
4
activities weakly
4
labeled raw
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!