A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Data Science Methods and Tools for Industry 4.0: A Systematic Literature Review and Taxonomy. | LitMetric

The Fourth Industrial Revolution, also named Industry 4.0, is leveraging several modern computing fields. Industry 4.0 comprises automated tasks in manufacturing facilities, which generate massive quantities of data through sensors. These data contribute to the interpretation of industrial operations in favor of managerial and technical decision-making. Data science supports this interpretation due to extensive technological artifacts, particularly data processing methods and software tools. In this regard, the present article proposes a systematic literature review of these methods and tools employed in distinct industrial segments, considering an investigation of different time series levels and data quality. The systematic methodology initially approached the filtering of 10,456 articles from five academic databases, 103 being selected for the corpus. Thereby, the study answered three general, two focused, and two statistical research questions to shape the findings. As a result, this research found 16 industrial segments, 168 data science methods, and 95 software tools explored by studies from the literature. Furthermore, the research highlighted the employment of diverse neural network subvariations and missing details in the data composition. Finally, this article organized these results in a taxonomic approach to synthesize a state-of-the-art representation and visualization, favoring future research studies in the field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255695PMC
http://dx.doi.org/10.3390/s23115010DOI Listing

Publication Analysis

Top Keywords

data science
12
data
8
science methods
8
methods tools
8
systematic literature
8
literature review
8
methods software
8
software tools
8
industrial segments
8
methods
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!