A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Role of Dibenzo Crown Additive for Improving the Stability of Inorganic Perovskite Solar Cells. | LitMetric

Role of Dibenzo Crown Additive for Improving the Stability of Inorganic Perovskite Solar Cells.

Nanomaterials (Basel)

Key Laboratory of Green Preparation and Applicationfor Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.

Published: May 2023

Photovoltaics are being transformed by perovskite solar cells. The power conversion efficiency of these solar cells has increased significantly, and even higher efficiencies are possible. The scientific community has gained much attention due to perovskites' potential. Herein, the electron-only devices were prepared by spin-coating and introducing the organic molecule dibenzo-18-crown-6 (DC) to CsPbIBr perovskite precursor solution. The current-voltage (I-V) and J-V curves were measured. The morphologies and elemental composition information of the samples were obtained by SEM, XRD, XPS, Raman, and photoluminescence (PL) spectroscopies. The distinct impact of organic DC molecules on the phase, morphology, and optical properties of perovskite films are examined and interpreted with experimental results. The efficiency of the photovoltaic device in the control group is 9.76%, and the device efficiency gradually increases with the increase of DC concentration. When the concentration is 0.3%, the device efficiency is the best, reaching 11.57%, short-circuit current is 14.01 mA/cm, the open circuit voltage is 1.19 V, and the fill factor is 0.7. The presence of DC molecules effectively controlled the perovskite crystallization process by inhibiting the in-situ generations of impurity phases and minimizing the defect density of the film.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254584PMC
http://dx.doi.org/10.3390/nano13111751DOI Listing

Publication Analysis

Top Keywords

solar cells
12
perovskite solar
8
device efficiency
8
perovskite
5
role dibenzo
4
dibenzo crown
4
crown additive
4
additive improving
4
improving stability
4
stability inorganic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!