β-Hydroxy-β-methyl Butyrate Regulates the Lipid Metabolism, Mitochondrial Function, and Fat Browning of Adipocytes.

Nutrients

CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.

Published: May 2023

A growing number of in vivo studies demonstrated that β-hydroxy-β-methyl butyrate (HMB) can serve as a lipid-lowering nutrient. Despite this interesting observation, the use of adipocytes as a model for research is yet to be explored. To ascertain the effects of HMB on the lipid metabolism of adipocytes and elucidate the underlying mechanisms, the 3T3-L1 cell line was employed. Firstly, serial doses of HMB were added to 3T3-L1 preadipocytes to evaluate the effects of HMB on cell proliferation. HMB (50 µM) significantly promoted the proliferation of preadipocytes. Next, we investigated whether HMB could attenuate fat accumulation in adipocytes. The results show that HMB treatment (50 µM) reduced the triglyceride (TG) content. Furthermore, HMB was found to inhibit lipid accumulation by suppressing the expression of lipogenic proteins (C/EBPα and PPARγ) and increasing the expression of lipolysis-related proteins (p-AMPK, p-Sirt1, HSL, and UCP3). We also determined the concentrations of several lipid metabolism-related enzymes and fatty acid composition in adipocytes. The HMB-treated cells showed reduced G6PD, LPL, and ATGL concentrations. Moreover, HMB improved the fatty acid composition in adipocytes, manifested by increases in the contents of n6 and n3 PUFAs. The enhancement of the mitochondrial respiratory function of 3T3-L1 adipocytes was confirmed via Seahorse metabolic assay, which showed that HMB treatment elevated basal mitochondrial respiration, ATP production, H leak, maximal respiration, and non-mitochondrial respiration. In addition, HMB enhanced fat browning of adipocytes, and this effect might be associated with the activation of the PRDM16/PGC-1α/UCP1 pathway. Taken together, HMB-induced changes in the lipid metabolism and mitochondrial function may contribute to preventing fat deposition and improving insulin sensitivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255702PMC
http://dx.doi.org/10.3390/nu15112550DOI Listing

Publication Analysis

Top Keywords

lipid metabolism
12
hmb
11
β-hydroxy-β-methyl butyrate
8
metabolism mitochondrial
8
mitochondrial function
8
fat browning
8
adipocytes
8
browning adipocytes
8
effects hmb
8
hmb treatment
8

Similar Publications

Objectives: An efficient approach to monitor the risks associated with chronic diseases is to use a dietary diversity score (DDS). To our knowledge, there has been no study conducted on the correlation between DDS and cardiovascular risk factors in individuals with diabetes. Hence, the objective of this study is to ascertain the correlation between these traits.

View Article and Find Full Text PDF

Background: Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by chronic hyperglycemia, mostly resulting from impaired insulin production and diminished glucose metabolism regulation. Qiwei Baizhu San (QWBZS) is a classic formula used in traditional Chinese medicine for the treatment of T2DM. A comprehensive analysis of the efficacy and safety of QWBZS in the treatment of T2DM is essential.

View Article and Find Full Text PDF

All roads lead to Rome: the plasticity of gut microbiome drives the extensive adaptation of the Yarkand toad-headed agama () to different altitudes.

Front Microbiol

January 2025

Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Ürümqi, China.

The gut microbiome was involved in a variety of physiological processes and played a key role in host environmental adaptation. However, the mechanisms of their response to altitudinal environmental changes remain unclear. In this study, we used 16S rRNA sequencing and LC-MS metabolomics to investigate the changes in the gut microbiome and metabolism of the Yarkand toad-headed agama () at different altitudes (-80 m to 2000 m).

View Article and Find Full Text PDF

Objectives: Asthma, a prevalent chronic disease, poses significant health threats and burdens healthcare systems. This study focused on the role of bronchial epithelial cells in asthma pathophysiology.

Methods: Bioinformatics was used to identify key asthmarelated genes.

View Article and Find Full Text PDF

Biomarkers for ischemic stroke (IS) are yet to fulfill clinical requirements. This study used non-targeted metabolomics to investigate differential metabolites and metabolic pathways in plasma and brain tissue following IS, with the aim of identifying new potential biomarkers and therapeutic targets. Twelve Tibetan miniature pigs were randomly assigned to a model- or sham-operation group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!