In this work, a blend of PEO, polysulfone (PSF), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSi) was prepared at different PEO-PSf weight ratios (70-30, 80-20, and 90-10) and ethylene oxide to lithium (EO/Li) ratios (16/1, 20/1, 30/1, and 50/1). The samples were characterised using FT-IR, DSC, and XRD. Young's modulus and tensile strength were evaluated at room temperature with micro-tensile testing. The ionic conductivity was measured between 5 °C and 45 °C through electrochemical impedance spectroscopy (EIS). The samples with a ratio of PEO and PSf equal to 70-30 and EO/Li ratio equal to 16/1 have the highest conductivity (1.91 × 10 S/cm) at 25 °C, while the PEO-PSf 80-20 EO/Li = 50/1 have the highest averaged Young's modulus of about 1.5 GPa at 25 °C. The configuration with a good balance between electrical and mechanical properties is the PEO-PSf 70-30 EO/Li = 30/1, which has a conductivity of 1.17 × 10 S/cm and a Young's modulus of 800 MPa, both measured at 25 °C. It was also found that increasing the EO/Li ratio to 16/1 dramatically affects the mechanical properties of the samples with them showing extreme embrittlement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255455PMC
http://dx.doi.org/10.3390/polym15112581DOI Listing

Publication Analysis

Top Keywords

young's modulus
12
electrical mechanical
8
measured °c
8
70-30 eo/li
8
eo/li ratio
8
mechanical properties
8
eo/li
5
°c
5
mechanical characterisation
4
characterisation polyethyleneoxide-polysulfone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!