The influence of thermomechanical stress on the conductivity of indium tin oxide (ITO)-coated polycarbonate (PC) films was investigated. PC is the industry's standard material for window panes. ITO coatings on polyethylene terephthalate (PET) films are the main commercially available option; as such, most investigations refer to this combination. The investigations in this study aim to investigate the critical crack initiation strain at different temperatures and crack initiation temperatures for two different coating thicknesses and for a commercially available PET/ITO film for validation purposes. Additionally, the cyclic load was investigated. The results show the comparatively sensitive behavior of the PC/ITO films, with a crack initiation strain at room temperature of 0.3-0.4% and critical temperatures of 58 °C and 83 °C, with high variation depending on the film's thickness. Under thermomechanical loading, the crack initiation strain decreases with increasing temperatures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255800PMC
http://dx.doi.org/10.3390/polym15112543DOI Listing

Publication Analysis

Top Keywords

crack initiation
16
initiation strain
12
ito-coated polycarbonate
8
polycarbonate films
8
influence thermal
4
thermal mechanical
4
mechanical stress
4
stress electrical
4
electrical conductivity
4
conductivity ito-coated
4

Similar Publications

Based on the symmetric initiation mechanism of double-wing cracks in coal rock mass induced by high-pressure electro-recoil water pressure, fracturing experiments have been performed on coal rock mass under different water pressures and discharge conditions using high-voltage electric pulse hydraulic fracturing devices. Combined with CT scans, the crack spatial distribution inside the post-break coal rock mass was analyzed and found that the edge of the water injection hole is prone to produce double-wing cracks along the drilling hole diameter. ABAQUS is used to verify the physical test and extend the test conditions, the geometric parameter change, morphological expansion rule and crack initiation mechanism of double-wing crack in coal rock mass under different discharge conditions and ground stress conditions are studied.

View Article and Find Full Text PDF

P2-NaMnNiCoO stabilized by optimal active facets for sodium-ion batteries.

J Colloid Interface Sci

January 2025

MOE Key Laboratory for UV Light-Emitting Materials and Technology, Department of Physics, Northeast Normal University, Changchun, Jilin 130024, PR China; Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China. Electronic address:

Considering factors such as crustal reserves, atomic mass, redox potential and energy density, sodium-ion batteries (SIBs) are regarded as the most promising alternative to lithium-ion batteries (LIBs). Transition metal-based layered oxides, especially typical NaMnO, stand out among cathode materials due to their low cost and high energy density. However, NaMnO cathodes face several challenges, including Jahn-Teller distortion, manganese dissolution, structural collapse, irreversible phase transition and significant capacity loss.

View Article and Find Full Text PDF

Taking the titanium alloy wing-body connection joint at the rear beam of a certain type of aircraft as the research object, this study analyzed the failure mechanism and verified the structural safety of the wing-body connection joint under actual flight loads. Firstly, this study verified the validity of the loading system and the measuring system in the test system through the pre-test, and the repeatability of the test was analyzed for error to ensure the accuracy of the experimental data. Then, the test piece was subjected to 400,000 random load tests of flight takeoffs and landings, 100,000 Class A load tests, and ground-air-ground load tests, and the test piece fractured under the ground-air-ground load tests.

View Article and Find Full Text PDF

Fracture toughness is an important index related to the service safety of marine risers, and weld is an essential component of the steel catenary risers. In this paper, microscopic structure characterization methods such as scanning electron microscopy (SEM) and electron back scatter diffraction (EBSD), as well as mechanical experiments like crack tip opening displacement (CTOD) and nanoindentation, were employed to conduct a detailed study on the influence of the microstructure characteristics of multi-wire submerged arc welded seams of steel catenary riser pipes on CTOD fracture toughness. The influence mechanisms of each microstructure characteristic on fracture toughness were clarified.

View Article and Find Full Text PDF

Mechanical and Energy Evolution Characteristics of Fractured Sandstone Materials: A True Triaxial Experimental Study.

Materials (Basel)

January 2025

State Key Laboratory of Coal Mine Disasters Dynamics and Control, Chongqing University, Chongqing 400044, China.

To investigate the mechanical and energy evolution characteristics of fractured rock under true triaxial stresses, true triaxial strength compression experiments on fractured sandstone were conducted with varying crack lengths and widths. The results indicate that under true triaxial stresses, the peak stress of the rock exhibits a gradual decline with an increase in crack length and width. Meanwhile, crack initiation stress and crack damage stress of fractured sandstone also demonstrate a declining trend overall, and the influence of crack length on the characteristic stress (crack initiation stress and crack damage stress) of sandstone is more pronounced than that of crack width.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!