In recent years, composite biomaterials have attracted attention for drug delivery applications due to the possibility of combining desired properties of their components. However, some functional characteristics, such as their drug release efficiency and likely side effects, are still unexplored. In this regard, controlled tuning of the drug release kinetic via the precise design of a composite particle system is still of high importance for many biomedical applications. This objective can be properly fulfilled through the combination of different biomaterials with unequal release rates, such as mesoporous bioactive glass nanoparticles (MBGN) and poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBV) microspheres. In this work, MBGNs and PHBV-MBGN microspheres, both loaded with Astaxanthin (ASX), were synthesised and compared in terms of ASX release kinetic, ASX entrapment efficiency, and cell viability. Moreover, the correlation of the release kinetic to phytotherapeutic efficiency and side effects was established. Interestingly, there were significant differences between the ASX release kinetic of the developed systems, and cell viability differed accordingly after 72 h. Both particle carriers effectively delivered ASX, though the composite microspheres exhibited a more prolonged release profile with sustained cytocompatibility. The release behaviour could be fine-tuned by adjusting the MBGN content in the composite particles. Comparatively, the composite particles induced a different release effect, implying their potential for sustained drug delivery applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255251 | PMC |
http://dx.doi.org/10.3390/polym15112432 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States.
The widespread use of gadolinium-based contrast agents for magnetic resonance imaging (MRI) in recent decades has led to a growing demand for Gd and raised environmental concerns due to their direct discharge into wastewater systems. In response, we developed an electrochemical filtration method to recover Gd from patient urine following contrast-enhanced MRI. This method involves modifying a conventional vacuum filtration apparatus by introducing electrodes into the filter membrane, creating a strong electric field of ∼5 kV/m and a steep three-zone pH gradient within the filter membrane.
View Article and Find Full Text PDFCurr Res Food Sci
December 2024
Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
To improve the stability of D-limonene, a protective barrier is essential to prevent degradation and maintain its integrity. Therefore, the potential of using seed gum (LPSG) as a novel source for creating electrospun nanofibers for D-limonene encapsulation was investigated by varying LPSG concentrations (0.25%, 0.
View Article and Find Full Text PDFUnlabelled: The HIV-1 Rev-RRE regulatory axis plays a crucial role in viral replication by facilitating the nucleo-cytoplasmic export and expression of viral mRNAs with retained introns. In this study, we investigated the impact of variation in Rev-RRE functional activity on HIV-1 replication kinetics and reactivation from latency. Using a novel HIV-1 clone with an interchangeable Rev cassette, we engineered viruses with different Rev functional activities and demonstrated that higher Rev-RRE activity confers greater viral replication capacity while maintaining a constant level of Nef expression.
View Article and Find Full Text PDFUnlabelled: Myosin-IC (myo1c) is a class-I myosin that supports transport and remodeling of the plasma membrane and membrane-bound vesicles. Like other members of the myosin family, its biochemical kinetics are altered in response to changes in mechanical loads that resist the power stroke. However, myo1c is unique in that the primary force-sensitive kinetic transition is the isomerization that follows ATP binding, not ADP release as in other slow myosins.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, 1907 East Gate City Blvd, Greensboro, North Carolina 27401, United States.
An innovative biosorbent-based water remediation unit could reduce the demand for freshwater while protecting the surface and groundwater sources by using saline water resources, such as brine, brackish water, and seawater for irrigation. Herein, for the first time, we introduce a simple, rapid, and cost-effective iron(III)-tannate biosorbent-based technology, which functions as a stand-alone fixed-bed filter system for the treatment of salinity, heavy-metal contaminants, and pathogens present in a variety of water resources. Our approach presents a streamlined, cost-efficient, energy-saving, and sustainable avenue for water treatment, distinct from current adsorption desalination or conventional membrane techniques supplemented with chemical and UV treatments for disinfection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!