, an important medicinal plant, is rich in resveratrol and polydatin, but it frequently suffers from drought stress in the nursery stage, which inhibits the plant's growth, active components concentrations, and the price of rhizome in the later stage. The purpose of this study was to analyze how exogenous 100 mM melatonin (MT) (an indole heterocyclic compound) affected biomass production, water potential, gas exchange, antioxidant enzyme activities, active components levels, and () gene expression of . seedlings growing under well-watered and drought stress conditions. The 12-week drought treatment negatively affected the shoot and root biomass, leaf water potential, and leaf gas exchange parameters (photosynthetic rate, stomatal conductance, and transpiration rate), whereas the application of exogenous MT significantly increased these variables of stressed and non-stressed seedlings, accompanied by higher increases in the biomass, photosynthetic rate, and stomatal conductance under drought versus well-watered conditions. Drought treatment raised the activities of superoxide dismutase, peroxidase, and catalase in the leaves, while the MT application increased the activities of the three antioxidant enzymes regardless of soil moistures. Drought treatment reduced root chrysophanol, emodin, physcion, and resveratrol levels, while it dramatically promoted root polydatin levels. At the same time, the application of exogenous MT significantly increased the levels of the five active components, regardless of soil moistures, with the exception of no change in the emodin under well-watered conditions. The MT treatment also up-regulated the relative expression of under both soil moistures, along with a significantly positive correlation between the relative expression of and resveratrol levels. In conclusion, exogenous MT can be employed as a biostimulant to enhance plant growth, leaf gas exchange, antioxidant enzyme activities, and active components of . under drought stress conditions, which provides a reference for drought-resistant cultivation of . .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255253PMC
http://dx.doi.org/10.3390/plants12112141DOI Listing

Publication Analysis

Top Keywords

drought stress
16
active components
16
gas exchange
12
drought treatment
12
soil moistures
12
drought
8
water potential
8
exchange antioxidant
8
antioxidant enzyme
8
enzyme activities
8

Similar Publications

Water scarcity is a foremost environmental concern and is expected to hasten in the forthcoming years due to severe fluctuations in weather patterns worldwide. The present work was designed to explore the potential role of alpha-tocopherol (α-Toc), a form of vitamin E, on the morphological, physio-biochemical, and cellular antioxidant responses of two radish genotypes grown under drought conditions (38 ± 3% of field capacity). The individual and combined applications of α-Toc (100 ppm) were used as T0- Control, T1- Control + TF (TF-alpha-tocopherol), T2- Drought (D), and T3- D + TF with three replications.

View Article and Find Full Text PDF

Background: Drought stress is a significant global challenge that negatively impacts cotton fiber yield and quality. Although many drought-stress responsive genes have been identified in cotton species (Gossypium spp.), the diversity of drought response mechanisms across cotton species remains largely unexplored.

View Article and Find Full Text PDF

Synergistic and antagonistic relationships between cytokinins and other plant growth regulators are important in response to changing environmental conditions. Our study aimed to determine the functions of SlHP2 and SlHP3, two members of cytokinin signaling in tomato, in drought stress response using CRISPR/Cas9-mediated mutagenesis. Ten distinct genome-edited lines were generated via Agrobacterium tumefaciens-mediated gene transfer and confirmed through Sanger sequencing.

View Article and Find Full Text PDF

Chloroplast arrangement in finger millet under low-temperature conditions.

Biochim Biophys Acta Gen Subj

January 2025

RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.

Background: Finger millet, a C plant with mesophyll and bundle sheath cells, has been cultivated at high altitudes in the Himalayas owing to its adaptability to stressful environments. Under environmental stresses such as high light and drought, finger millet mesophyll chloroplasts move toward the bundle sheath, a phenomenon known as aggregative arrangement.

Methods: To investigate the effect of low temperatures on mesophyll chloroplast arrangement in finger millet, we conducted microscopic observations and photochemical measurements using leaves treated at different temperatures in light or darkness, with or without pharmacological inhibitors.

View Article and Find Full Text PDF

Two pepper subclass II SnRK2 genes positively regulate drought stress response, with differential responsiveness to abscisic acid.

Plant Physiol Biochem

January 2025

Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, 06974, Seoul, Republic of Korea. Electronic address:

Sucrose nonfermenting-1-related protein kinase 2 (SnRK2) intricately modulates plant responses to abiotic stresses and abscisic acid (ABA) signaling. In pepper genome, five SnRK2 genes with sequence homology to CaSnRK2.6 showed distinct expression patterns across various pepper organs and in response to treatments with ABA, drought, mannitol, and salt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!