Comets are likely to contain various carbon oxide molecules potentially including C(O)OC and c-C2O2 on their surfaces and comae, as well as their silicon-substituted analogues possibly playing a role in the formation of interstellar dust grains. In this work, high-level quantum chemical data are provided to support such potential future astrophysical detection through the generation of predicted rovibrational data. Laboratory-based chemistry would also benefit from such aforementioned computational benchmarking considering these molecules' historic computational and experimental elusiveness. Coupled-cluster singles, doubles, and perturbative triples, the F12b formalism, and the cc-pCVTZ-F12 basis set garner the rapid, yet highly trusted F12-TcCR level of theory leveraged presently. This current work points to all four molecules' strong IR activity, coupled with large intensities, thus suggesting the potential for JWST detection. Although Si(O)OSi possesses a permanent dipole moment significantly larger than those of the other molecules of present interest, the significant abundance of the potential precursor carbon monoxide suggests that the dicarbon dioxide molecules may yet be observable in the microwave region of the electromagnetic spectrum. Thus, this present work details the likely existence and detectability of these four cyclic molecules, providing updated implications compared to previous work performed both experimentally and computationally.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254651 | PMC |
http://dx.doi.org/10.3390/molecules28114563 | DOI Listing |
J Fluoresc
January 2025
Department of Physics, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560056, India.
This investigation delves into the extraction of polyphenols from the flowers of Tabebuia rosea using a basic maceration approach with acetone, ethanol, and methanol as solvents. The spectroscopic analysis of the dye obtained confirms the existence of functional groups in the polyphenol extract. The study also explores optoelectronic, fluorescence, and photometric characteristics associated with polyphenols.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, University of California, Davis, One Shields Ave., Davis, California 95616, United States.
Combustion and pyrolysis processes of allene and propyne are known to involve radicals with the structural formula CH, the most stable of which is the classic resonance-stabilized allyl radical. In addition to allyl, four other isomers of CH are possible: the propene derivatives -1-propenyl, -1-propenyl, and 2-propenyl, as well as the cyclopropane derivative cyclopropyl. Among these 5 species, the allyl radical has been extensively studied both theoretically and spectroscopically; however, little is known about the spectroscopy of the cyclopropyl radical, and virtually no experimental spectroscopic data are available for the remaining three.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
High-level multireference configuration interaction plus Davidson correction (MRCI + Q) calculation method was employed to determine the potential energy curves (PECs) of 10 Λ-S states, which come from the first and second dissociation channels of the SbP molecule, as well as 34 Ω states considering the spin-orbit coupling (SOC) effect. By solving the Schrödinger equation for nuclear motion, spectroscopic constants for the ground state XΣ and low-lying excited states were obtained and compared with experimental data. The excellent agreement indicates the reliability of our calculations.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi, 110016, India.
Crystalline γ-FeO(OH) dominantly possessing ─OH terminals (𝛾-FeO(OH)), polycrystalline γ-FeO(OH) containing multiple ─O, ─OH, and Fe terminals (𝛾-FeO(OH)), and α-FeO majorly containing ─O surface terminals are used as electrocatalysts to study the effect of surface terminals on electrocatalytic nitrate reduction reaction (eNORR) selectivity and stabilization of reaction intermediates. Brunauer-Emmett-Teller analysis and electrochemically determined surface area suggest a high active surface area of 117.79 m g (ECSA: 0.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
Various electronically excited states and the feasibility of direct laser cooling of SH, SeH, and TeH are investigated using the highly accurate ab initio and dynamical methods. For the detailed calculations of the seven low-lying Λ-S states of SH, we utilized the internally contracted multireference configuration interaction approach, considering the spin-orbit coupling (SOC) effects. Our calculated spectroscopic constants are in very good agreement with the available experimental results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!