A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of Reaction Temperature on the Microstructure and Properties of Magnesium Phosphate Chemical Conversion Coatings on Titanium. | LitMetric

Effect of Reaction Temperature on the Microstructure and Properties of Magnesium Phosphate Chemical Conversion Coatings on Titanium.

Molecules

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China.

Published: June 2023

Magnesium phosphate (MgP) has garnered growing interest in hard tissue replacement processes due to having similar biological characteristics to calcium phosphate (CaP). In this study, an MgP coating with the newberyite (MgHPO·3HO) was prepared on the surface of pure titanium (Ti) using the phosphate chemical conversion (PCC) method. The influence of reaction temperature on the phase composition, microstructure, and properties of coatings was systematically researched with the use of an X-ray diffractometer (XRD), a scanning electron microscope (SEM), a laser scanning confocal microscope (LSCM), a contact angle goniometer, and a tensile testing machine. The formation mechanism of MgP coating on Ti was also explored. In addition, the corrosion resistance of the coatings on Ti was researched by assessing the electrochemical behavior in 0.9% NaCl solution using an electrochemical workstation. The results showed that temperature did not obviously affect the phase composition of the MgP coatings, but affected the growth and nucleation of newberyite crystals. In addition, an increase in reaction temperature had a great impact on properties including surface roughness, thickness, bonding strength, and corrosion resistance. Higher reaction temperatures resulted in more continuous MgP, larger grain size, higher density, and better corrosion resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254136PMC
http://dx.doi.org/10.3390/molecules28114495DOI Listing

Publication Analysis

Top Keywords

reaction temperature
12
corrosion resistance
12
microstructure properties
8
magnesium phosphate
8
phosphate chemical
8
chemical conversion
8
mgp coating
8
phase composition
8
mgp
5
reaction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!