The search for safe and efficient new antifungal compounds for agriculture has led to more efforts in finding new modes of action. This involves the discovery of new molecular targets, including coding and non-coding RNA. Rarely found in plants and animals but present in fungi, group I introns are of interest as their complex tertiary structure may allow selective targeting using small molecules. In this work, we demonstrate that group I introns present in phytopathogenic fungi have a self-splicing activity in vitro that can be adapted in a high-throughput screening to find new antifungal compounds. Ten candidate introns from different filamentous fungi were tested and one group ID intron found in showed high self-splicing efficiency in vitro. We designed the intron to act as a -acting ribozyme and used a fluorescence-based reporter system to monitor its real time splicing activity. Together, these results are opening the way to study the druggability of such introns in crop pathogen and potentially discover small molecules selectively targeting group I introns in future high-throughput screenings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254303PMC
http://dx.doi.org/10.3390/molecules28114460DOI Listing

Publication Analysis

Top Keywords

antifungal compounds
12
group introns
12
group intron
8
high-throughput screening
8
small molecules
8
group
5
introns
5
intron potential
4
potential target
4
target antifungal
4

Similar Publications

Bioactive Sesquiterpenoids from L. Flowers: Chemical Profiling and Antifungal Activity Against Species.

Plants (Basel)

January 2025

Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain.

L. (cotton-lavender) is receiving increasing attention due to its potential for modern medicine and is considered both a functional food and nutraceutical. In this work, the phytochemical profile of its flower hydromethanolic extract was investigated by gas chromatography-mass spectrometry, and its applications as a biorational for crop protection were explored against spp.

View Article and Find Full Text PDF

and Evaluation of the Antischistosomal Activity of Polygodial and 9-Deoxymuzigadial Isolated from Branches.

Molecules

January 2025

Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09280-560, SP, Brazil.

In the present study, the hexane extract from branches of (Winteraceae) displayed potent activity against parasites (100% mortality of the worms at 200 μg/mL). Bioactivity-guided fractionation afforded, in addition to the previously reported bioactive sesquiterpene 3,6-epidioxy-bisabola-1,10-diene, two chemically related drimane sesquiterpenes-polygodial () and 9-deoxymuzigadial (). The anti- effects for compounds and were determined in vitro, with compound demonstrating significant potency (EC value of 10 μM for both male and female worms), while was inactive.

View Article and Find Full Text PDF

Improving Geldanamycin Production in Through UV Mutagenesis of Protoplast.

Microorganisms

January 2025

Fujian Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, 25 Jinbu Road, Fuzhou 350007, China.

Geldanamycin, a benzoquinone ansa antibiotic, has been extensively applied in medical, agricultural, and health research areas due to its antitumor, antifungal, herbicidal, and antiradiation effects. In this study, an improvement of geldanamycin production by FIM18-0592 was first performed by protoplasts combined with UV mutagenesis and ribosome engineering technology, respectively. The results showed that strains induced by UV mutagenesis of protoplasts were superior to protoplasts treated with erythromycin in terms of the positive variability, average relative titer, and maximum relative titer, with values of 51.

View Article and Find Full Text PDF

Aquatic Invertebrate Antimicrobial Peptides in the Fight Against Aquaculture Pathogens.

Microorganisms

January 2025

CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.

The intensification of aquaculture has escalated disease outbreaks and overuse of antibiotics, driving the global antimicrobial resistance (AMR) crisis. Antimicrobial peptides (AMPs) provide a promising alternative due to their rapid, broad-spectrum activity, low AMR risk, and additional bioactivities, including immunomodulatory, anticancer, and antifouling properties. AMPs derived from aquatic invertebrates, particularly marine-derived, are well-suited for aquaculture, offering enhanced stability in high-salinity environments.

View Article and Find Full Text PDF

Synthesis and Antifungal Activity of Fmoc-Protected 1,2,4-Triazolyl-α-Amino Acids and Their Dipeptides Against Species.

Biomolecules

January 2025

Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy.

In recent years, fungal infections have emerged as a significant health concern across veterinary species, especially in livestock such as cattle, where fungal diseases can result in considerable economic losses, as well as in humans. In particular, species, notably and , are opportunistic pathogens that pose a threat to both animals and humans. This study focuses on the synthesis and antifungal evaluation of novel 9-fluorenylmethoxycarbonyl (Fmoc)-protected 1,2,4-triazolyl-α-amino acids and their dipeptides, designed to combat fungal pathogens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!