In the field of research on medicinal plants from the Armenian flora, the phytochemical study of two L. species, M. Bieb. and L. (Caprifoliaceae), has led to the isolation of five previously undescribed oleanolic acid glycosides from an aqueous-ethanolic extract of the roots: 3--α-L-rhamnopyranosyl-(1→3)-β-D-glucopyranosyl-(1→4)-β-D-glucopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28--β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl ester, 3--β-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranosyl-(1→4)-β-D-glucopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28--β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl ester, 3--β-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranosyl-(1→4)-β-D-glucopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid, 3--β-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-β-D-xylopyranosyl-(1→4)-β-D-glucopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28--β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl ester, 3--α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranosyl-(1→4)-β-D-glucopyranosyl-(1→4)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28--β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl ester. Their full structural elucidation required extensive 1D and 2D NMR experiments, as well as mass spectrometry analysis. For the biological activity of the bidesmosidic saponins and the monodesmosidic saponin, their cytotoxicity on a mouse colon cancer cell line (MC-38) was evaluated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254451PMC
http://dx.doi.org/10.3390/molecules28114329DOI Listing

Publication Analysis

Top Keywords

acid 28--β-d-glucopyranosyl-1→6-β-d-glucopyranosyl
16
28--β-d-glucopyranosyl-1→6-β-d-glucopyranosyl ester
16
ester acid
12
oleanolic acid
8
acid glycosides
8
acid
6
glycosides structural
4
structural analysis
4
analysis cytotoxicity
4
cytotoxicity field
4

Similar Publications

In the present study, the effects of glucono-δ-lactone (GDL) as an acid reagent during thermal treatment on the quality of alkaline dough and steamed buns were examined. During the heating process, GDL improved the viscoelasticity and fluidity of the alkaline dough and enhanced intermolecular hydrogen bonding. The hardness of steamed buns was reduced by 61.

View Article and Find Full Text PDF

Distinguishing abiotic corrosion from two types of microbiologically influenced corrosion (MIC) using a new electrochemical biofilm/MIC test kit.

J Environ Manage

January 2025

Department of Chemical & Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, 45701, USA; Department of Biological Sciences, Molecular & Cellular Biology Program, Ohio University, Athens, OH, 45701, USA. Electronic address:

Biofilms can cause biofouling, water quality deterioration, and transmission of infectious diseases. They are also responsible for microbiologically influenced corrosion (MIC) which can cause leaks, resulting in environmental disasters. A new disposable biofilm/MIC test kit was demonstrated to distinguish abiotic corrosion of carbon steel from MIC.

View Article and Find Full Text PDF

The worldwide epidemic of obesity has drastically worsened with the increase in more sedentary lifestyles and increased consumption of fatty foods. Increased blood free fatty acids (FFAs), often observed in obesity, leads to impaired insulin action, and promotes the development of insulin resistance and Type 2 diabetes mellitus (T2DM). JNK, IKK-NF-κB, and STAT3 are known to be involved in skeletal muscle insulin resistance.

View Article and Find Full Text PDF

The glucocorticoid receptor (GR) is present in almost every vertebrate cell and is utilized in many biological processes. Despite an abundance of mammalian data, the structural conservation of the receptor and cross-species susceptibility, particularly for aquatic species, has not been well defined. Efforts to reduce, refine, and/or replace animal testing have increased, driving the impetus to advance development of new approach methodologies (NAMs).

View Article and Find Full Text PDF

Protein-protein interactions in the cell membrane are typically mediated by glycans, with terminal sialic acid often involved in these interactions. To probe the nature of the interactions, we developed quantitative cross-linking methods involving the glycans of the glycoproteins and the polypeptide moieties of proteins. We designed and synthesized biotinylated enrichable cross-linkers that were click-tagged to metabolically incorporate azido-sialic acid on cell surface glycans to allow cross-linking of the azido-glycans with lysine residues on proximal polypeptides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!