For a half-century, the commercial wild silkworm, , has been protected by coumaphos, which is an internal organophosphorus insecticide used to kill the potential parasitic fly larvae inside. Knowledge about the detoxification genes of as well as the detoxification mechanism for this species remains severely limited. In this study, we identified 281 detoxification genes (32 GSTs, 48 ABCs, 104 CYPs, and 97 COEs) in the genome of this insect, which are unevenly distributed over 46 chromosomes. When compared to the domesticated silkworm, , a lepidopteran model species, has a similar number of ABCs, but a greater number of GSTs, CYPs, and COEs. By transcriptome-based expression analysis, we found that coumaphos at a safe concentration level significantly changed the pathways related to ATPase complex function and the transporter complex in . KEGG functional enrichment analysis indicated that protein processing in the endoplasmic reticulum was the most affected pathway after coumaphos treatment. Finally, we identified four significantly up-regulated detoxification genes (, , , and ) and one significantly down-regulated detoxification gene () in response to coumaphos treatment, suggesting that these five genes may contribute to detoxification of coumaphos in . Our study provides the first set of detoxification genes for wild silkworms from Saturniidae and highlights the importance of detoxification gene repertoire in insect pesticide tolerance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253597 | PMC |
http://dx.doi.org/10.3390/ijms24119775 | DOI Listing |
Int J Mol Sci
January 2025
State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
Alkaline environments such as alkaline lands, lakes, and industrial wastewater are not conducive to the growth of plants and microorganisms due to high pH and salinity. ChbZIP1 is a bZIP family transcription factor isolated from an alkaliphilic microalgae ( sp. BLD).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
Long non-coding RNAs (lncRNAs) are emerging as critical regulators in honeybee physiology, influencing development, behavior, and stress responses. This study investigates the role of lncRNA LOC113219358 in the immune response and neurophysiological regulation of brains. Using RNA interference (RNAi) and RNA sequencing (RNA-seq), we demonstrate that silencing lncLOC113219358 significantly alters the expression of 162 mRNA transcripts, including genes associated with detoxification, energy metabolism, and neuronal signaling.
View Article and Find Full Text PDFBiology (Basel)
January 2025
Department of Science Education, National Taipei University of Education, 134 Section 2, Heping East Road, Taipei City 106, Taiwan.
The shallow-sea hydrothermal vent at Guishan Islet, located off the coast of Taiwan, serves as a remarkable natural site for studying microbial ecology in extreme environments. In April 2019, we investigated the composition of prokaryotic picoplankton communities, their gene expression profiles, and the dissolved inorganic carbon uptake efficiency. Our results revealed that the chemolithotrophs spp.
View Article and Find Full Text PDFBMC Microbiol
January 2025
USDA-ARS, Sustainable Agricultural Systems Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA.
Background: Pseudomonas syringae pv. tagetis (Pstag) causes apical chlorosis on sunflower and various other plants of the Asteraceae family. Whole genome sequencing of Pstag strain EB037 and transposon-mutant derivatives, no longer capable of causing apical chlorosis, was conducted to improve understanding of the molecular basis of disease caused by this pathogen.
View Article and Find Full Text PDFBioresour Technol
January 2025
Huanghe Science and Technology College, No. 94 Hanghai Middle Road, Zhengzhou 450000, PR China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), No.12 Zhongguancun South Street, Haidian District, Beijing, PR China.
A short heat treatment (HT, 90 °C-100 °C, 5 min) was applied to two-phase anaerobic digestion (TPAD) of pig manure (PM) to investigate its effect on microbial inactivation in the acidified feedstock during the methanogenic phase. The results showed that no differences in biogas production at organic loading rate (OLR) below 4.28 g volatile solid (VS)/(L·d).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!