Titanium implantation success may be compromised by Staphylococcus aureus surface colonization and posterior infection. To avoid this issue, different strategies have been investigated to promote an antibacterial character to titanium. In this work, two antibacterial agents (silver nanoparticles and a multifunctional antimicrobial peptide) were used to coat titanium surfaces. The modulation of the nanoparticle (≈32.1 ± 9.4 nm) density on titanium could be optimized, and a sequential functionalization with both agents was achieved through a two-step functionalization method by means of surface silanization. The antibacterial character of the coating agents was assessed individually as well as combined. The results have shown that a reduction in bacteria after 4 h of incubation can be achieved on all the coated surfaces. After 24 h of incubation, however, the individual antimicrobial peptide coating was more effective than the silver nanoparticles or their combination against Staphylococcus aureus. All tested coatings were non-cytotoxic for eukaryotic cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253953PMC
http://dx.doi.org/10.3390/ijms24119739DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
12
antimicrobial peptide
12
nanoparticles multifunctional
8
multifunctional antimicrobial
8
staphylococcus aureus
8
antibacterial character
8
titanium
5
comparison antibacterial
4
antibacterial silver
4
peptide titanium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!