Influence of Estrus on Dairy Cow Milk Exosomal miRNAs and Their Role in Hormone Secretion by Granulosa Cells.

Int J Mol Sci

Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.

Published: June 2023

AI Article Synopsis

  • Estrus detection is vital for cow fertility in dairy farming, but about 50% of cows do not exhibit clear estrus signs, leading to challenges in recognizing optimal breeding times.
  • The study examines miRNA expression in milk exosomes during estrus and their impact on hormone secretion, revealing that estrous cow milk has lower exosome quantity and specific miRNA changes compared to non-estrous milk.
  • Findings highlight the involvement of exosomal miRNAs in reproductive processes and hormone pathways, suggesting future research on milk-derived exosomes could enhance understanding of cow reproduction and fertility management.

Article Abstract

Estrus is crucial for cow fertility in modern dairy farms, but almost 50% of cows do not show the behavioral signs of estrus due to silent estrus and lack of suitable and high-accuracy methods to detect estrus. MiRNA and exosomes play essential roles in reproductive function and may be developed as novel biomarkers in estrus detection. Thus, we analyzed the miRNA expression patterns in milk exosomes during estrus and the effect of milk exosomes on hormone secretion in cultured bovine granulosa cells in vitro. We found that the number of exosomes and the exosome protein concentration in estrous cow milk were significantly lower than in non-estrous cow milk. Moreover, 133 differentially expressed exosomal miRNAs were identified in estrous cow milk vs. non-estrous cow milk. Functional enrichment analyses indicated that exosomal miRNAs were involved in reproduction and hormone-synthesis-related pathways, such as cholesterol metabolism, FoxO signaling pathway, Hippo signaling pathway, mTOR signaling pathway, steroid hormone biosynthesis, Wnt signaling pathway and GnRH signaling pathway. Consistent with the enrichment signaling pathways, exosomes derived from estrous and non-estrous cow milk both could promote the secretion of estradiol and progesterone in cultured bovine granulosa cells. Furthermore, genes related to hormonal synthesis (, , and ) were up-regulated after exosome treatment, while exosomes inhibited the expression of . Moreover, estrous and non-estrous cow-milk-derived exosomes both could increase the expression of and decrease the expression of , and did not influence the expression of . To our knowledge, this is the first study to investigate exosomal miRNA expression patterns during dairy cow estrus and the role of exosomes in hormone secretion by bovine granulosa cells. Our findings provide a theoretical basis for further investigating milk-derived exosomes and exosomal miRNA effects on ovary function and reproduction. Moreover, bovine milk exosomes may have effects on the ovaries of human consumers of pasteurized cow milk. These differential miRNAs might provide candidate biomarkers for the diagnosis of dairy cow estrus and will assist in developing new therapeutic targets for cow infertility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253592PMC
http://dx.doi.org/10.3390/ijms24119608DOI Listing

Publication Analysis

Top Keywords

cow milk
28
signaling pathway
20
granulosa cells
16
dairy cow
12
exosomal mirnas
12
hormone secretion
12
milk exosomes
12
bovine granulosa
12
non-estrous cow
12
cow
11

Similar Publications

Integrating the milk microbiome signatures in mastitis: milk-omics and functional implications.

World J Microbiol Biotechnol

January 2025

Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.

Mammalian milk contains a variety of complex bioactive and nutritional components and microorganisms. These microorganisms have diverse compositions and functional roles that impact host health and disease pathophysiology, especially mastitis. The advent and use of high throughput omics technologies, including metagenomics, metatranscriptomics, metaproteomics, metametabolomics, as well as culturomics in milk microbiome studies suggest strong relationships between host phenotype and milk microbiome signatures in mastitis.

View Article and Find Full Text PDF

The gut microbiome plays a key role in human health, influencing various biological processes and disease outcomes. The historical roots of probiotics are traced back to Nobel Laureate Élie Metchnikoff, who linked the longevity of Bulgarian villagers to their consumption of sour milk fermented by Lactobacilli. His pioneering work led to the global recognition of probiotics as beneficial supplements, now a multibillion-dollar industry.

View Article and Find Full Text PDF

Intramammary dry-off treatment is widely considered an effective method for preventing and curing intramammary infection (IMI) in lactating cows; however, it is not commonly used in small ruminants like goats. Therefore, this study was designed to evaluate the effect of an approved cefazolin-based intramammary treatment on the milk microbiota of Alpine dairy goats during the dry and early lactation periods. Sixty goats were randomly selected based on bacteriological results and randomly allocated into the control group (CG) or the treatment group (TG).

View Article and Find Full Text PDF

The effect of fermented foods on healthy human gut microbiota structure and function, particularly its seasonal preference and frequent long-term consumption, has been largely uncharacterised. Here, we assess the gut microbiota and metabolite composition of 78 healthy Indian agrarian individuals who differ in the intake of fermented milk and soybean products by seasonal sampling during hot-humid summer, autumn and dry winter. Here we show that, seasonal shifts between the Prevotella- and Bifidobacterium/Ruminococcus-driven community types, or ecological states, and associated fatty acid derivatives, with a bimodal change in Bacteroidota community structure during summer, particularly in fermented milk consumers.

View Article and Find Full Text PDF

T follicular helper cell expansion and hyperimmunoglobulinemia with spontaneous IgE production to dietary antigens in IgA-deficient mice.

Mucosal Immunol

January 2025

Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States. Electronic address:

Immunoglobulin A (IgA), the most abundantly produced antibody at mucosal surfaces, is thought to play key roles in immune responses to respiratory and enteric pathogens and in the regulation of commensal colonization. Low IgA levels have been associated with recurrent infections and immune dysregulation, including inflammatory bowel disease and autoimmunity. Levels of IgA in maternal breast milk and infant stool are both inversely associated with the emergence of immune responses to food antigens in infants and, in naturally resolving food sensitivity and immunotherapy protocols, the induction of IgA antibodies to dietary antigens has been associated with the acquisition of food tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!