Molecular Dynamics Simulations of HPr Proteins from a Thermophilic and a Mesophilic Organism: A Comparative Thermal Study.

Int J Mol Sci

Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Unidad Cuajimalpa, Mexico City 05300, Mexico.

Published: May 2023

The histidine-containing phosphocarrier (HPr) is a monomeric protein conserved in Gram-positive bacteria, which may be of mesophilic or thermophilic nature. In particular, the HPr protein from the thermophilic organism is a good model system for thermostability studies, since experimental data, such as crystal structure and thermal stability curves, are available. However, its unfolding mechanism at higher temperatures is yet unclear at a molecular level. Therefore, in this work, we researched the thermal stability of this protein using molecular dynamics simulations, subjecting it to five different temperatures during a time span of 1 μs. The analyses of the structural parameters and molecular interactions were compared with those of the mesophilic homologue HPr protein from . Each simulation was run in triplicate using identical conditions for both proteins. The results showed that the two proteins lose stability as the temperature increases, but the mesophilic structure is more affected. We found that the salt bridge network formed by the triad of Glu3-Lys62-Glu36 residues and the salt bridge made up of Asp79-Lys83 ion pair are key factors to keep stable the thermophilic protein, maintaining the hydrophobic core protected and the structure packed. In addition, these molecular interactions neutralize the negative surface charge, acting as "natural molecular staples".

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253394PMC
http://dx.doi.org/10.3390/ijms24119557DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
8
dynamics simulations
8
hpr protein
8
thermal stability
8
molecular interactions
8
salt bridge
8
molecular
6
protein
5
hpr
4
simulations hpr
4

Similar Publications

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Constitutive mitochondrial dynamics ensure quality control and metabolic fitness of cells, and their dysregulation has been implicated in various human diseases. The large GTPase Dynamin-related protein 1 (Drp1) is intimately involved in mediating constitutive mitochondrial fission and has been implicated in mitochondrial cell death pathways. During ferroptosis, a recently identified type of regulated necrosis driven by excessive lipid peroxidation, mitochondrial fragmentation has been observed.

View Article and Find Full Text PDF

Single-point mutations are pivotal in molecular zoology, shaping functions and influencing genetic diversity and evolution. Here we study three such genetic variants of a mechano-responsive protein, cadherin-23, that uphold the structural integrity of the protein, but showcase distinct genotypes and phenotypes. The variants exhibit subtle differences in transient intra-domain interactions, which in turn affect the anti-correlated motions among the constituent β-strands.

View Article and Find Full Text PDF

The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function.

View Article and Find Full Text PDF

Evaluating amyloid-beta aggregation and toxicity in transgenic Caenorhabditis elegans models of Alzheimer's disease.

Methods Cell Biol

January 2025

Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Santa Maria, RS, Brazil.

Alzheimer's disease (AD) is the leading cause of dementia in the elderly, clinically characterized by memory loss, cognitive decline, and behavioral disturbances. Its pathogenesis is not fully comprehended but involves intracellular depositions of amyloid beta peptide (Aβ) and neurofibrillary tangles of hyperphosphorylated tau. Currently, pharmacological interventions solely slow the progression of symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!